
User Guide
Release 2.7.2

Veronica Berglyd Olsen

Tuesday, 24 June 2025 at 17:05

CONTENTS

1 Introduction 3
1.1 Why Plain Text? . 3
1.2 Adding Meta Data . 3

2 Organising Your Project 5
2.1 How Root Folders Work . 6
2.2 Regular Folders . 7
2.3 Documents . 7
2.4 Active and Inactive Documents . 8
2.5 Importance and Status . 8

3 Chapters and Scenes 9
3.1 Heading Levels . 9

4 Basic Formatting 11
4.1 Text Paragraphs . 11
4.2 Text Emphasis with Markdown . 12

5 Comments and Notes 13
5.1 Plain Comments . 13
5.2 Synopsis or Description Comments . 13
5.3 Footnote Comments . 14
5.4 Ignored Text . 15

6 Tags and References 17
6.1 How to Use Tags . 17
6.2 How to Use References . 18

7 Alignment and Indentation 21
7.1 Paragraph Alignment and Indentation . 21
7.2 Alignment with Line Breaks . 22
7.3 Alignment with First Line Indent . 22
7.4 Alignment with Forced Line Breaks . 23

8 Advanced Formatting 25
8.1 Formatting with Shortcodes . 25
8.2 Vertical Space and Page Breaks . 26
8.3 Inserting Word Counts in the Text . 27

9 Front and Back Matter 29

i

9.1 The Title Page . 29
9.2 Additional Pages . 30
9.3 Unnumbered Chapters . 30

10 Tips & Tricks 31
10.1 Managing the Project . 31
10.2 Layout Tricks . 32
10.3 Organising Your Text . 32
10.4 Other Tools . 33

11 The Main Window 35
11.1 Project Tree and Editor View . 35
11.2 Novel View and Editor View . 37
11.3 Novel Outline View . 38
11.4 Project Search . 39
11.5 Switching Focus . 39
11.6 Colour Themes . 39

12 Managing Projects 41
12.1 Creating A New Project . 41
12.2 Project Settings . 42
12.3 Backup . 43

13 The Editor and Viewer 45
13.1 Editing a Document . 45
13.2 Search & Replace . 47
13.3 Auto-Replace as You Type . 47
13.4 Viewing a Document . 48

14 Split and Merge Documents 51
14.1 Splitting Documents . 51
14.2 Merging Documents . 52

15 Building the Manuscript 53
15.1 The Manuscript Build Tool . 53
15.2 Build Settings . 54
15.3 Building Manuscript Documents . 58
15.4 Printing . 59

16 Writing Statistics 61
16.1 Idle Time . 61
16.2 Session Timer . 61

17 Dialogue Highlighting 63
17.1 Quoted Dialogue . 63
17.2 Alternative Dialogue . 64
17.3 Dialogue Line Symbols . 64
17.4 Dialogue with Narrator Break . 65
17.5 Alternating Dialogue and Narration . 65

18 Story Comments 67
18.1 Story Structure Comments . 67
18.2 Story Notes . 68

ii

19 Keyboard Shortcuts 71
19.1 Main Window Shortcuts . 71
19.2 Project Tree Shortcuts . 72
19.3 Document Editor Shortcuts . 72
19.4 Document Viewer Shortcuts . 75

20 Word and Text Counts 77
20.1 Text Word Counts and Stats . 77
20.2 Manuscript Counts . 78

21 Typographical Notes 79
21.1 Dashes and Ellipsis . 79
21.2 Single and Double Quotes . 79
21.3 Single and Double Prime . 80
21.4 Modifier Letter Apostrophe . 80
21.5 White Space Symbols . 80

22 Customisations 81
22.1 Spell Check Dictionaries . 81
22.2 Syntax and GUI Themes . 82

23 Handling Errors 85
23.1 Recovered Documents . 85
23.2 Project Lockfile . 85

24 Project Format Changes 87
24.1 Format 1.5 Changes . 87
24.2 Format 1.4 Changes . 87
24.3 Format 1.3 Changes . 88
24.4 Format 1.2 Changes . 88
24.5 Format 1.1 Changes . 88
24.6 Format 1.0 Changes . 89

25 File Locations 91
25.1 Configuration . 91
25.2 Application Data . 91

26 How Data is Stored 93
26.1 Overview . 93
26.2 Project Structure . 94
26.3 Project Documents . 94
26.4 Project Meta Data . 95

27 Running from Source 97
27.1 Dependencies . 97
27.2 Build and Install from Source . 98
27.3 Building the Translation Files . 98
27.4 Building the Example Project . 98
27.5 Building the Documentation . 99

28 Running Tests 101
28.1 Dependencies . 101
28.2 Simple Test Run . 101

iii

28.3 Advanced Options . 101

iv

User Guide, Release 2.7.2

Release Version: 2.7.2
Updated: Tuesday, 24 June 2025 at 17:05

novelWriter is an open source plain text editor designed for writing novels assembled from individual
text documents. It uses a minimal formatting syntax inspired by Markdown, and adds a meta data syntax
for comments, synopsis, and cross-referencing. It is designed to be a simple text editor that allows for
easy organisation of text and notes, using human readable text files as storage for robustness.

Useful Links

• Website: https://novelwriter.io

• Documentation: https://docs.novelwriter.io

• Public Releases: https://releases.novelwriter.io

• Internationalisation: https://crowdin.com/project/novelwriter

• Source Code: https://github.com/vkbo/novelWriter

• Source Releases: https://github.com/vkbo/novelWriter/releases

• Issue Tracker: https://github.com/vkbo/novelWriter/issues

• Feature Discussions: https://github.com/vkbo/novelWriter/discussions

• PyPi Project: https://pypi.org/project/novelWriter

• Social Media: https://fosstodon.org/@novelwriter

CONTENTS 1

https://novelwriter.io
https://docs.novelwriter.io
https://releases.novelwriter.io
https://crowdin.com/project/novelwriter
https://github.com/vkbo/novelWriter
https://github.com/vkbo/novelWriter/releases
https://github.com/vkbo/novelWriter/issues
https://github.com/vkbo/novelWriter/discussions
https://pypi.org/project/novelWriter
https://fosstodon.org/@novelwriter

User Guide, Release 2.7.2

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

In a nutshell, novelWriter is a plain text editor that lets you organise one or more novels and associated
notes as many smaller documents. You can at any time generate standard document formats from these
plain text documents. Whether it is an outline of your story, a draft, a complete manuscript, or even a
collection of your character notes or other notes.

1.1 Why Plain Text?

The idea is to let you be creative without having to deal with formatting while you are writing, or be
distracted by it.

Of course, you probably need some form of minimal formatting for your text. At the very least you need
emphasis. Most people are familiar with adding emphasis using _underscores_ and **asterisks**.
This formatting standard comes from Markdown and is supported by novelWriter. It also uses Markdown
formatting for defining document headings, which is how you distinguish between chapters and scenes.

For those special cases where you need more complex formatting, a set of shortcodes are available. To
make these codes easier to use, a dropdown button bar is available in the editor panel with standard format
buttons. So don’t worry. You don’t have to learn any of these codes.

1.2 Adding Meta Data

In addition to the body text of your story, novelWriter allows you to enter some additional meta data into
your text documents to indicate things like which characters are present in a chapter or scene, whose
point of view we’re seeing, what location the events take place in, and so on.

Since the editor is plain text, this is done on special lines of text starting with an @ character. The editor
will show an auto-complete menu to help you write these lines. We will talk more about this later.

You can also add your own author’s comments in your text, without these comments becoming a part of
the story itself. A comment line starts with a % character. There are different types of comments, and an
auto-complete menu can help you here too. More about this later as well.

Limitations

Please keep in mind that novelWriter is designed for writing fiction, so the formatting features available
are limited to those relevant for this purpose. It is not suitable for technical writing. It is also not a
full-featured Markdown editor.

3

https://en.wikipedia.org/wiki/Markdown

User Guide, Release 2.7.2

In addition, novelWriter is not intended as a tool for organising research for writing, and therefore lacks
formatting features you may need for this purpose. The notes feature in is mainly intended for character
profiles and plot outlines. It is recommended to use a proper note-taking tool for research. This is anyway
more practical as you may use the same research for multiple projects.

4 Chapter 1. Introduction

CHAPTER

TWO

ORGANISING YOUR PROJECT

Your project is organised into a set of top level folders called “Root Folders”, which each have specific
meaning in the project. Your project documents and notes are stored under these root folders. All the
content of your project is available in the Project Content panel on the left side of the main window.

Fig. 1: The Project Content tree populated with example documents.

Each line in the project tree shows the name of each item, its word count (or alternatively character count),
an icon for Active and Inactive Documents, and a custom icon for Importance and Status of each item.
These latter two are covered alter in this section.

You can add, view and edit documents in the project tree by right-clicking on them. Some features are
also located in the buttons along the top, next to the Project Content label.

5

User Guide, Release 2.7.2

2.1 How Root Folders Work

Projects are structured into a set of top level folders called “Root Folders”. They are visible in the project
tree at the left side of the main window. Each type of root folder has a distinct icon.

The documents that make up your story go into a root folder of type Novel. Your notes go into the other
root folders. These other root folder types are separated into types depending on what kind of notes go
into them. This is not only for organisation. It also matters to how you can reference these notes later.
We will come back to this in the Tags and References section.

A new project may not have all of the root folders present, but you can add the ones you want from the
project tree tool bar.

The intended usage of each type of root folder is listed below. However, aside from the Novel folder, no
restrictions are applied by novelWriter on what you put in them. You can use them however you want.

2.1.1 Root Folder Types

Novel (Story)
This is where you put the documents that are part of your story. You can create multiple Novel
folders if you wish, but various parts of the application assumes each Novel folder belong to one
novel.

The Novel folder is somewhat special in that it can contain documents for chapters, scenes and
story partitions. How this is indicated is covered in the section Chapters and Scenes.

Plot (Notes)
This is where you can keep notes and outlines of your story plots. Such notes can be particularly
useful if you have outlines for sub plot. You can make references to these subplots from the scene
documents, which makes it easier to track story progress.

Characters (Notes)
Character notes go in this root folder type. For your main characters, you may want to make one
document for each character. For smaller characters you can put multiple into the same document.
In your chapters and scenes you can reference these character notes as point-of-view or focus char-
acters.

Locations (Notes)
The locations where your story takes place can be documented here. This, together with Plot
and Characters are the key story elements to track, and to reference from your chapter and scene
documents.

Timeline (Notes)
If the story has multiple plot timelines or jumps in time within the same plot, this folder type can
be used to track this.

Objects (Notes)
Important objects in the story, for instance physical objects that change hands often, can be tracked
here.

Entities (Notes)
Does your plot have many powerful organisations or companies? Or other entities that are part of
the plot? They can be organised here.

Custom (Notes)
The custom root folder type can be used for tracking anything else not covered by the above options.

6 Chapter 2. Organising Your Project

User Guide, Release 2.7.2

Templates
Any document added under this root folder will be made available as template options when cre-
ating new documents. See Document Templates for more details.

Archive
If you don’t want to delete a document, or put it in the Trash folder where it may be deleted, but
still want it out of your main project, you can put it in this folder. The contents of the document
will be ignored by the scanner that looks for tags, and it will be ignored in any outline view and in
your manuscript.

Trash
This folder behaves like you expect. Anything dropped in here can be deleted permanently from
the project, and the content doesn’t show up anywhere else in novelWriter.

The root folder types are closely tied to the tags and reference system. Each folder type for novel and
notes corresponds to one or more categories of tags that can be used to reference the content in them.
See Tags and References for more details.

Tip: The root folders have standard names, but you can rename them to whatever you want.

2.2 Regular Folders

You can add regular folders anywhere you want in the project. The folders are there purely as a way for
you to organise the documents in meaningful sections and to be able to collapse and hide them in the
project tree when you’re not working on those documents.

When novelWriter is processing the documents in a project, like for instance when you create a manuscript
from it, these folders are ignored. Only the order of the documents themselves matter.

2.3 Documents

You can add documents anywhere you want in your project structure. You can even add documents as
child items of other documents, just as if they were folders. This makes it easy to associate a set of scenes
with their chapter. You can also do this in your notes, where you for instance may have a hierarchy of
your locations.

The name on a document in the project tree is not linked to any headings in the document text. Think of
the document name as a file name. You can rename a document, or any other item in the project, at any
time.

Documents come in two types:

Novel Documents
These are the documents that make up your story or novel. They can only be added under a root
folder of type Novel. You can technically also add them under Archive. See Chapters and Scenes
for more details on how these documents are handled by novelWriter.

Project Notes
These are the documents where you keep your notes. You can add them anywhere in your project,
including under Novel type folders. If you do add them there, they are not treated as a part of the
story by default.

2.2. Regular Folders 7

User Guide, Release 2.7.2

You can convert between the two types of documents where both types are allowed. You can also convert
folders into documents, which may sometimes be convenient too.

Another convenient feature is that documents can be split into sub-documents by its headings, or multiple
documents merged into one. This is particularly useful if you start out with larger structural documents,
like one containing all chapters and scenes in an act, and then split those when you start writing. See
Split and Merge Documents for more details.

2.3.1 Document Templates

If you wish to create template documents to be used when creating new documents, like for instance a
character note template, you can add a Templates root folder to your project. Any document added to
this root folder will show up in the Add Item menu in the project tree toolbar. When selected, a new
document is created with its content copied from the chosen template.

New in version 2.3.

2.4 Active and Inactive Documents

A document can be set as “Active” or “Inactive”, which alters the icon in the third column of the project
tree. These are mostly intended for your convenience as they will indicate whether the document is meant
to be included in the manuscript or not. You can think of an inactive status as a whole-document out-take.
It allows you to take it out without moving it to Archive.

Inactive documents are by default excluded from your manuscript, but you can override this if you wish.
See Document Selection for more details.

2.5 Importance and Status

Each document or folder in your project can have either a “Status” or “Importance” label set. These are
labels and icons that you control and define yourself, and novelWriter doesn’t use them for anything. You
can modify these labels in Project Settings. See Status and Importance for more details.

The “Status” labels are intended to tag a novel document as for instance a draft or as completed, and the
“Importance” labels are intended to tag character notes, or other project notes, as for instance a main,
major, or minor character or story element.

Whether a document uses a “Status” or “Importance” label depends on which root folder it lives in. If
it’s in a Novel type folder, it uses the “Status” label, otherwise it uses an “Importance” label.

8 Chapter 2. Organising Your Project

CHAPTER

THREE

CHAPTERS AND SCENES

Since novelWriter uses a plain text format, the structure of your novel must follow a certain set of simple
rules. For documents in a Novel type root folder, it is the heading that determines if the document is a
chapter or a scene.

The formatting of headings is based on Markdown. A heading is indicated by a line starting with one or
more # characters. It accepts up to four of these. You can use multiple headings in the same document,
but it is the first heading that determines which icon and information is displayed in the project tree.

Note: You can use the same heading levels for your notes in the other root folders, but they aren’t treated
as chapters or scenes, so there you are free to use them as you want.

3.1 Heading Levels

Fig. 1: An illustration of how heading levels correspond to the novel structure.

Four levels of headings are understood for novel documents. You can pick and choose from these as you
want, but if your story has chapters, you should use these headings to indicate them. If you also add scene
headings, you have better control of how your scene separators are formatted in your manuscript. The
chapter and scenes headings are also displayed in the Novel View and Outline View.

Title Text
This is a heading level one. This heading indicates the start of a new partition. Partitions are for
when you want to split your story into “Part 1”, “Part 2”, etc. You can also choose to use them for

9

https://en.wikipedia.org/wiki/Markdown

User Guide, Release 2.7.2

splitting the text up into acts, and then hide these headings in your manuscript so that they are not
included in the output.

Chapter Title
This is a heading level two. This heading indicates the start of a new chapter. Chapter numbers can
be inserted automatically when building the manuscript, so you don’t have to do this in the title.
See Automatic Numbering for more details.

Scene Title
This is a heading level three. This heading indicates the start of a new scene. Scene numbers or
scene separators can be inserted automatically when building the manuscript, so you can use the
title field as a working title for your scenes if you wish, but you must provide a minimal title.

Section Title
This is a heading level four. This heading indicates the start of a new section. Section titles can
be replaced by separators or ignored completely when building the manuscript. The meaning of a
section is really whatever you want it to be. You can use it to split your scenes up into chunks, or
into separate documents.

For headings level one through three, adding a ! modifies the meaning of the heading. The alternative
meaning of the heading is only relevant when you generate your manuscript, but you may want to keep
the use cases in mind while writing.

#! Title Text
This tells the Manuscript Build tool that the level one heading is intended to be used for the novel
or notes folder’s main title, like for instance the novel title on the cover page. When building the
manuscript, this will use a different styling of the title, which you can modify independently from
how partition titles are styled. See The Title Page for more details.

##! Chapter Title
This tells the Manuscript Build tool to not assign a chapter number to this chapter title if automatic
chapter numbers are enabled. Such titles are useful for prologues and epilogues for instance. See
Unnumbered Chapters for more details.

###! Scene Title
This is an alternative scene heading that can be formatted differently in the Manuscript Build tool.
It is intended for separating “soft” and “hard” scene breaks. Aside from this, it behaves identically
to a regular scene heading. See Hard and Soft Scenes for more details.

The formatting of these headings can be customised quite extensively in the Manuscript Tool, which is
covered in a separate part of the documentation.

Note: The space after the # or ! character is mandatory. The editor will change colour and font size
when the heading is correctly formatted.

Page breaks can be automatically added before titles, partition, chapter and scene headings from the
Manuscript Build tool when you build your project to a format that supports page breaks. If you want
page breaks in other places, you have to specify them manually. See Vertical Space and Page Breaks for
more details.

10 Chapter 3. Chapters and Scenes

CHAPTER

FOUR

BASIC FORMATTING

The basic text formatting syntax of novelWriter is based on Markdown. It is only a subset of the Mark-
down syntax though. Lists, images, and links are not supported.

That said, URLs in the text should automatically be highlighted and become clickable. However, only
URLs starting with “http” or “https” are recognised. In the editor, you must hold down the Ctrl key
when clicking a URL to follow it.

4.1 Text Paragraphs

A text paragraph is indicated by a blank line. That is, you need two line breaks to separate two fragments
of text into two paragraphs. Single line breaks are treated as line breaks within a paragraph.

It is important that you actually follow this rule. You should not, for instance, mimic indented paragraphs
manually in the editor. This, and a lot of other formatting options that can be applied to text paragraphs
in the Manuscript Tool depend on paragraphs being separated by blank lines.

Correct

Scene

This is a text paragraph.

This is another text paragraph.

Incorrect

Scene

This is a text paragraph.
This is meant to be another text paragraph.

If you do as shown in the “Incorrect” example, novelWriter will understand this as a single paragraph
with two lines.

11

https://en.wikipedia.org/wiki/Markdown

User Guide, Release 2.7.2

4.2 Text Emphasis with Markdown

A minimal set of Markdown text emphasis styles are supported for text paragraphs.

text
The text is rendered as emphasised text (italicised).

text
The text is rendered as strongly emphasised text (bold).

~~text~~
Strike through text.

In Markdown guides it is often recommended to differentiate between strong emphasis and emphasis by
using ** for strong and _ for emphasis, although Markdown generally also supports __ for strong and
* for emphasis. However, since the differentiation makes the highlighting and conversion significantly
simpler and faster, in novelWriter this is a rule, not just a recommendation.

In addition, the following rules apply:

1. The emphasis and strike through formatting tags do not allow spaces between the words and the
tag itself. That is, **text** is valid, **text ** is not.

2. More generally, the delimiters must be on the outer edge of words. That is, some **text in
bold** here is valid, some** text in bold** here is not.

3. If using both ** and _ to wrap the same text, the underscore must be the inner wrapper. This is
due to the underscore also being a valid word character, so if they are on the outside, they violate
rule 2.

4. Text emphasis does not span past line breaks. If you need to add emphasis to multiple lines or
paragraphs, you must apply it to each of them in turn.

5. Text emphasis can only be used in comments and paragraphs. Headings and meta data tags don’t
allow for formatting, and any formatting markup will be displayed as-is.

Tip: novelWriter supports standard escape syntax for the emphasis markup characters in case the editor
misunderstands your intended usage of them. That is, *, _ and \~ will generate a plain *, _ and ~,
respectively, without interpreting them as part of the markup.

12 Chapter 4. Basic Formatting

CHAPTER

FIVE

COMMENTS AND NOTES

You can add comments to your text that are not a part of the story. Regular comments are intended for
you to add notes to yourself inside the text, which may be useful when you revise your drafts. However,
there are several types of comments you can use.

This section covers the basic comment types. There are a couple of advanced features that use comment
syntax too, but they are covered later.

5.1 Plain Comments

A plain comment is a line or paragraph that starts with the character % as its first character. You can put
them wherever you like in your documents, and you can choose to include or exclude them from your
manuscript.

For the most part, novelWriter completely ignores these comments. They are not included in your word
or character counts either, and are only displayed in the document viewer panel if you enable them.

Example

Scene

A regular text paragraph in the scene.

% A comment you've added for your own notes.

Another regular text paragraph in the scene.

5.2 Synopsis or Description Comments

A special kind of comments are Synopsis and Short Description comments. They are different from
plain comments in that they can be displayed alongside other information about a scene or a character or
other story element described in a note. As with plain comments, they can be included in your manuscript,
but they are formatted differently than plain comments.

Note: A summary or description comment can be used once, and only once, for each heading as they
are considered a description of the content of the text under that heading. If you add two such comments
under the same heading, the last one will be used.

13

User Guide, Release 2.7.2

5.2.1 Synopsis

A Synopsis comment is intended for adding a summary of your chapters and scenes.

Example

Scene

%Synopsis: A summary of the content of the scene.

The actual scene text.

5.2.2 Short Description

A Short Description comment behaves exactly the same as a synopsis comment, but is intended as a
description of a story element, like a character.

Example

Characters

Darth Vader

%Short: A Sith Lord that used to be a Jedi.

Your text about the character.

Luke Skywalker

%Short: A Jedi. The son of Darth Vader.

Your text about the character.

Note: The %Synopsis: and %Short: comment prefixes are interchangeable, but when you include
them in the manuscript, they are labelled based on the prefix, so the latter may make more sense for a
Character note than the former.

5.3 Footnote Comments

Footnotes are added with a shortcode, paired with a matching comment for the actual footnote text. The
matching is done with a key that links the two. If you insert a footnote from the Insert menu, a unique
key is generated for you. Shortcodes in general are covered in more detail in Formatting with Shortcodes.

The insert footnote feature will add the footnote shortcode marker at the position of your cursor in the
editor panel, and create the associated footnote comment right after the paragraph. It will then move the
cursor there so you can immediately start typing the footnote text.

The footnote comment can be anywhere in the document, so if you wish to move them to, say, the bottom
of the text, you are free to do so.

14 Chapter 5. Comments and Notes

User Guide, Release 2.7.2

Footnote keys are only required to be unique within a document, so if you copy, move or merge text,
you must make sure the keys are not duplicated. If you use the automatically generated keys from the
Insert menu, they are unique among all indexed documents. They are not guaranteed to be unique against
footnotes in the Archive or Trash folder though, but the chance of accidentally generating the same key
twice in a project is relatively small.

Example

Scene

This is a text paragraph with a footnote[footnote:fn1] in the middle.

%Footnote.fn1: This is the text of the footnote.

New in version 2.5.

5.4 Ignored Text

If you want to completely ignore some of the text in your documents, but are not ready to delete it, you
can add %~ before the text paragraph or line. This will cause novelWriter to skip the text entirely when
generating previews or building manuscripts.

This is a better way of removing text than converting them to regular comments, as you may want to
include regular comments in your previews or draft manuscript.

You can toggle the ignored text feature on and off for a paragraph by pressing Ctrl+Shift+D on your
keyboard with your cursor somewhere in the paragraph.

Example

Scene

%~ This text is ignored.

This text is a regular paragraph.

5.4. Ignored Text 15

User Guide, Release 2.7.2

16 Chapter 5. Comments and Notes

CHAPTER

SIX

TAGS AND REFERENCES

One of the core features of novelWriter is its Tags and References system. This is perhaps one of
the features that makes novelWriter different from other similar applications. It is therefore not always
obvious to new users how this is supposed to work.

In novelWriter there are no forms or tables to fill in to define characters, locations or other elements of
your story. Instead, you create documents in one of the root folders for notes. Within these documents
you can set tags, like for instance for your main character. If you then want to annotate a scene with this
character as its point-of-view, you create a reference to the tag.

Tip: If you find the Tags and Reference system difficult to follow just from reading this chapter, you can
create a new project in the Welcome dialog’s New Project form and select “Create an example project”
from the “Pre-fill project” option. The example project contains several examples of tags and references.

6.1 How to Use Tags

The structure of your novelWriter project is inferred from the headings within the documents, not the
documents themselves. See Chapters and Scenes for more details. Therefore, metadata is also associated
with headings, and not the documents themselves.

A “tag” in novelWriter is a word or phrase that you define as belonging to a heading. Tags are set by
using the @tag keyword.

The basic format of a tag is @tag: TagName.

An alternative format of a tag is @tag: TagName | Display Name.

tagName (Required)
This is a unique identifier of your choosing. It is the value you use later for making references back
to the heading in the document. The tag must be unique.

Display Name (Optional)
This is an optional display name used for the tag. When you build your manuscript, you can
for instance insert the point-of-view character name directly into chapter titles. By default, the
tagName value is used in such headings, but if you use a shortened format internally in your project,
you can use the display name to specify a more suitable format for your chapter title.

Note: You can only set one tag per heading, and the tag has to be unique across all documents in the
project.

17

User Guide, Release 2.7.2

After a tag has been defined, it can be referenced in novel documents, or cross-referenced in other notes.
Tags will also show up in the Outline View and in the References panel under the document viewer when
a document is open in the viewer. See Novel Outline View and Document References for more details.

The editor will indicate to you that the keyword is correctly used and that the tag is allowed, that is, the
tag is unique, by adding a colour highlighting to it. An invalid tag should have a wiggly line under it, and
will not receive the colour that valid tags do.

The tag is the only part of notes that novelWriter uses. The rest of the document content is there for you
to use in whatever way you wish.

New in version 2.2: Tags are no longer case sensitive. The tags are by default displayed with the capital-
isation you use when defining the tag, but you don’t have to use the same capitalisation when referencing
it later.

New in version 2.3: Tags can have an optional display name for manuscript builds.

New in version 2.6: You can now add tags also to Novel Documents. These can be used for cross-
referencing between chapters and scenes, and also from notes if desired.

Example

Example of a note document for a character with a tag set:

Character: Jane Doe

@tag: Jane | Jane Doe

Some information about the character Jane Doe.

When this is done in a document in a root folder of type Characters, the tag is automatically treated as
an available character in your project with the value “Jane”. You will then be able to reference “Jane” in
any of your other documents using the reference keywords for characters.

The character “Jane” will also show up in the Character tab in the Reference panel below the document
viewer.

Note: It is the root folder type that defines what category of story elements the tag is indexed under. See
How Root Folders Work for more details.

6.2 How to Use References

Each heading of any level in your project can contain references to tags set in your notes. The references
are gathered by the project index and used to generate the Outline View, among other things.

References are set with a special keyword, with a list of corresponding tags. The valid keywords are
listed below. The format of a reference line is @keyword: value1, [value2] ... [valueN]. All
reference keywords allow multiple values.

@pov
The point-of-view character for the current section. The target must be a note tag in a Character
type root folder.

18 Chapter 6. Tags and References

User Guide, Release 2.7.2

@focus
The character that has the focus for the current section. This can be used in cases where the focus
is not the point-of-view character. The target must be a note tag in a Character type root folder.

@char
For other characters in the current section. The target must be a note tag in a Character type root
folder. This should not include the point-of-view or focus character if those references are used.

@plot
The plot or subplot advanced in the current section. The target must be a note tag in a Plot type
root folder.

@time
The timelines touched by the current section. The target must be a note tag in a Timeline type root
folder.

@location
The location the current section takes place in. The target must be a note tag in a Locations type
root folder.

@object
Objects present in the current section. The target must be a note tag in a Object type root folder.

@entity
Entities present in the current section. The target must be a note tag in an Entities type root folder.

@custom
Custom references in the current section. The target must be a note tag in a Custom type root
folder. The custom folder are for any other category of notes you may want to use.

@mention
For anything, anyone or anyplace mentioned, but not present in the current section. It is intended
for those cases where you reveal details about a character or place in a scene without otherwise
being a part of it. This can be useful when checking for consistency later. Any tag in any root note
folder can be listed under @mention.

@story
This is used when referencing a Novel Document, like a scene or chapter, from somewhere else
in your project. It is possible to also set tags in documents in a Novel type folder, and this is the
keyword you use to reference those.

When tags and references are used correctly, it will be indicated by highlight colours in the editor.

Note: The highlighter may be mistaken if the index of defined tags is out of date. If so, press F9 to
regenerate it, or select Rebuild Index from the Tools menu. In general, the index for a document is
regenerated when it is saved, so this shouldn’t normally be necessary.

Tip: If you add a reference in the editor to a tag that doesn’t yet exist, you can right-click it and select
Create Note for Tag. This will generate a new note automatically in the correct type of root folder, with
the new tag defined.

One note can also reference another note in the same way novel documents do. When the note is opened
in the document viewer, the references become clickable links, making it easier to follow connections

6.2. How to Use References 19

User Guide, Release 2.7.2

in the plot. You can follow links in the document editor by clicking them with the mouse while holding
down the Ctrl key. Clicked links are always opened in the view panel.

Your notes don’t show up in the Outline View, so referencing between notes is only meaningful if you
want to be able to click-navigate between them, or of course if you just want to highlight that two notes
are related.

Tip: If you cross-reference between notes and export your project as an HTML document using the
Manuscript Build tool, the cross-references become clickable links in the exported HTML document as
well.

Example

Example of a novel document with references to characters and plots:

Chapter 1

@pov: Jane

Scene 1

@char: John, Sam
@plot: Main

Once upon a time ...

6.2.1 Auto-Completion in the Editor

An auto-completer context menu will show up automatically in the document editor when you type the
character @ on a new line. It will first suggest tag or reference keywords for you to add, and after the :
has been added, suggest references from the list of tags you have already defined.

You can use the auto-completer to add multiple references with a , between them, and even type new
ones. Notes for new references can be created by right-clicking on them and selecting Create Note for
Tag from the menu.

New in version 2.2.

20 Chapter 6. Tags and References

CHAPTER

SEVEN

ALIGNMENT AND INDENTATION

The Markdown standard doesn’t have commands for aligning text, so novelWriter adds its own syntax
for this. It also has syntax for indentation, which is similar to Markdown block quotes.

7.1 Paragraph Alignment and Indentation

All documents have the text by default aligned to the left or justified, depending on your setting in Pref-
erences.

You can override the default text alignment on individual paragraphs by specifying alignment tags. These
tags are double angle brackets. Either >> or <<. You put them either before or after the paragraph, and
they will “push” the text towards the edge the brackets point towards. This should be fairly intuitive.

Indentation uses a similar syntax. But here you use a single > or < to “push” the text away from the edge.

Example

Table 1: Text Alignment and Indentation

Syntax Description
>> Right aligned text The text paragraph is right-aligned.
Left aligned text << The text paragraph is left-aligned.
>> Centred text << The text paragraph is centred.
> Left indented text The text has an increased left margin.
Right indented text < The text has an increased right margin.
> Left/right indented text < The text has both margins increased.

Note: The text editor will not show the alignment and indentation live. But the viewer will show them
when you open the document there. It will of course also be reflected in the document generated from
the Manuscript Build tool as long as the format supports paragraph alignment.

21

User Guide, Release 2.7.2

7.2 Alignment with Line Breaks

If you have line breaks in the paragraph, the markers for all the lines are combined and used for the entire
paragraph. For the following text, all lines will be centred:

Example

>> I am the very model of a modern Major-General <<
I've information vegetable, animal, and mineral
I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical

If you have multiple conflicting alignments on a paragraph, only one is applied. The order of precedence
is:

1. Left alignment

2. Right alignment

3. Centred text

4. Justified text

Note: It is strongly recommended that you keep the Preserve Hard Line Breaks setting enabled in your
manuscript build settings. This setting assumes all single line breaks in your text are intended. Turning
this off makes adding line breaks more complicated, but it is still possible. See Alignment with Forced
Line Breaks.

7.3 Alignment with First Line Indent

If you have first line indent enabled in your manuscript build settings, you probably want to disable it for
text in verses. Adding any alignment tags on a paragraph will cause the first line indent to be switched
off for that paragraph.

Example

The following text will always be aligned against the left margin:

I am the very model of a modern Major-General <<
I've information vegetable, animal, and mineral
I know the kings of England, and I quote the fights historical
From Marathon to Waterloo, in order categorical

22 Chapter 7. Alignment and Indentation

User Guide, Release 2.7.2

7.4 Alignment with Forced Line Breaks

If you turn off Preserve Hard Line Breaks in your manuscript build settings, you can still force line
breaks in paragraphs using the [br] shortcode. For clarity in the text, you can add a line break after it
as well. It doesn’t result in two line breaks.

Keep in mind that when the text is processed, the lines on either side of a [br] shortcode are combined,
and any trailing hard line break is ignored. This means that when such a paragraph is processed, these
line breaks count as the same line. This affects how alignment tags are handled. For instance, this text
becomes centred instead of left aligned.

>> I am the very model of a modern Major-General[br]
I've information vegetable, animal, and mineral[br]
I know the kings of England, and I quote the fights historical[br]
From Marathon to Waterloo, in order categorical <<

Since this is understood as one line, this is the only way you can actually centre this paragraph.

Caution: Due to this difference in how text with [br] tags are processed, it is generally better
to stick with the Preserve Hard Line Breaks setting enabled. It ensures a better correspondence
between what you see in the editor and what output you get.

See also Forced Line Break.

7.4. Alignment with Forced Line Breaks 23

User Guide, Release 2.7.2

24 Chapter 7. Alignment and Indentation

CHAPTER

EIGHT

ADVANCED FORMATTING

Standard Markdown formatting is somewhat limited, so novelWriter has some additional formatting
codes for special use cases. These codes are all based on brackets, and some allow an additional value to
be set after a colon.

This section covers all these formatting codes.

8.1 Formatting with Shortcodes

For basic formatting, like emphasis, you should use the standard Markdown style formatting tags descried
in Text Emphasis with Markdown whenever possible.

For additional formatting options, you can use shortcodes. Shortcodes is a form of in-line codes that
wrap the section of text to be formatted. Shortcodes can be nested to apply multiple formats to the same
piece of text.

These shortcodes are intended for special formatting cases, or more complex cases that cannot be solved
with simple Markdown-like formatting codes. Available shortcodes are listed below.

Table 1: Shortcodes Formats

Syntax Description
[b]text[/b] Text is displayed as bold text.
[i]text[/i] Text is displayed as italicised text.
[s]text[/s] Text is displayed as strike through text.
[u]text[/u] Text is displayed as underlined text.
[m]text[/m] Text is displayed as highlighted text.
[sup]text[/sup] Text is displayed as superscript text.
[sub]text[/sub] Text is displayed as subscript text.
[footnote:key] A reference to a footnote comment.

Unlike Markdown style codes, these can be used anywhere within a paragraph. Even in the middle of a
word if you need to. You can also freely combine them to form more complex formatting.

The shortcodes are available from the Format menu and in the editor toolbar, which can be activated by
clicking the left-most icon button in the editor header.

Note: Shortcodes are not processed until you generate a preview or generate a manuscript document.
So there is no highlighting of the text between the formatting markers. There is also no check that your

25

User Guide, Release 2.7.2

markers make sense. You must ensure that you have both the opening and closing formatting markers
where you want them.

New in version 2.2.

8.1.1 Forced Line Break

Inserting [br] in the text will ensure a line break is always inserted in that place, even if you turn off
Preserve Hard Line Breaks in your manuscript build settings.

You can add a manual line break after it too, for a better visual representation in the editor, but keep in
mind that this line break is removed before the text is processed, so the text on either side of the [br]
shortcode will be considered as belonging to the same line. This can affect how alignment is treated. See
Alignment with Forced Line Breaks for more details.

8.2 Vertical Space and Page Breaks

You can apply page breaks to partition, chapter and scene headings for novel documents from the
Manuscript Build tool. If you need to add a page break or additional vertical spacing in other places,
there are special codes available for this purpose.

Adding more than one line break between paragraphs will not increase the space between those para-
graphs when generating a manuscript document. To add additional space between paragraphs, add the
text [vspace] on a line of its own, and the Manuscript Build tool will insert a blank paragraph in its
place.

If you need multiple blank paragraphs just add a colon and a number to the above code. For instance,
writing [vspace:3] will insert three blank paragraphs.

If you need to add a page break somewhere, put the text [new page] on a line by itself before the text
you wish to start on a new page.

Note: The page break code is applied to the text that follows it. It adds a “page break before” mark to
the text when exporting to HTML or Open Document. This means that a [new page] code which has
no text following it will not result in a page break.

Example

This is a text paragraph.

[vspace:2]

This is another text paragraph, but there will be two empty paragraphs
between them.

[new page]

This text will start on a new page if the build format supports pages.

26 Chapter 8. Advanced Formatting

User Guide, Release 2.7.2

8.3 Inserting Word Counts in the Text

The cover page of a manuscript normally has the word count stated on it. Any statistics value collected
by novelWriter can be inserted into any document using a special shortcode. You can insert the code for
any of the available statistics values from the Insert menu under Word/Character Count.

The value inserted is the actual count for your entire manuscript, so it is not populated until you run the
Manuscript Build tool. Until then they will show up as “0” in the viewer panel.

The available codes are:

Table 2: Stats Shortcodes

Code Description
[field:allChars] Characters
[field:textChars] Characters in Text
[field:titleChars] Characters in Headings
[field:paragraphCount] Paragraphs
[field:titleCount] Headings
[field:allWordChars] Characters, No Spaces
[field:textWordChars] Characters in Text, No Spaces
[field:titleWordChars] Characters in Headings, No Spaces
[field:allWords] Words
[field:textWords] Words in Text
[field:titleWords] Words in Headings

Example

This is an example cover page. A similar page is automatically generated when you create a new project.

Jane Smith[br]
42 Main Street[br]
1234 Capital City <<

[vspace:5]

#! Example

>> **By Jane Smith** <<

>> Word Count: [field:textWords] <<

8.3. Inserting Word Counts in the Text 27

User Guide, Release 2.7.2

28 Chapter 8. Advanced Formatting

CHAPTER

NINE

FRONT AND BACK MATTER

Front and back matter documents are documents that go before and after your main story text. They can
include pages like your cover page, content tables, prologues, epilogues, etc. These special pages and
sections are supported to some extent by novelWriter.

9.1 The Title Page

It is recommended that you add a document at the very top of each Novel root folder with the novel title
in it. You should modify the level 1 heading format code with an ! in order to render it as a document
title that is excluded from any automatic Table of Content in a manuscript build document.

You can also add the author name and address above this if this is required by the manuscript format you
use, and additional space added before the title.

Example

This is the title page novelWriter generates automatically for a new project as of version 2.6:

Jane Doe[br]
Address Line 1[br]
Address Line 2 <<

[vspace:5]

#! My Novel

>> **By Jane Doe** <<

>> Word Count: [field:textWords] <<

The title is by default centred on the page. You can add more text to the page as you wish, like for instance
the author’s name and details.

The default title page inserts the word count for text only, but you can add other counts too. See Inserting
Word Counts in the Text for more details.

29

User Guide, Release 2.7.2

9.2 Additional Pages

If you want an additional page of text after the title page, starting on a fresh page, you can add [new
page] on a line by itself, and continue the text after it. This will insert a page break before the text. See
Vertical Space and Page Breaks for more details.

9.3 Unnumbered Chapters

If you use the automatic numbering feature for your chapters, but you want to keep some special chapters
separate from this, you can add an ! to the level 2 heading formatting code to tell the build tool to skip
these chapters when adding numbers.

Unnumbered chapters are useful for prologue and epilogue chapters, and also for interlude chapters if you
use those in your text. There is a separate formatting feature for such chapter titles in the Manuscript
Build tool. See the Building the Manuscript page for more details.

Example

##! Unnumbered Chapter Title

Chapter Text

30 Chapter 9. Front and Back Matter

CHAPTER

TEN

TIPS & TRICKS

This is a list of hopefully helpful little tips on how to get the most out of novelWriter.

Note: This section will be expanded over time. If you would like to have something added, feel free to
contribute, or start a discussion on the project’s Discussions Page.

10.1 Managing the Project

How do I create a project from a template?

On the Welcome dialog’s Create New Project form, you can select to “Prefill Project” from the content
of a different project. This feature is most useful if you copy a project you have dedicated to be a template
project. If you have a structure and settings you want to use for every new project, this is the best solution.

How do I merge multiple documents into one?

If you need to merge a selection of documents in your project into a single document, you can achieve
this by first making a new folder for just that purpose, and drag all the documents you want merged into
this folder. Then you can right click the folder, select Transform and Merge Documents in Folder.

In the dialog that pops up, the documents will be in the same order as in the folder, but you can rearrange
them here of you wish. See Split and Merge Documents for more details.

How do I share status or importance labels between projects?

The status or importance labels you have defined in a project can be exported from Project Settings from
the respective configuration tabs. You can then import these labels in another project.

31

https://github.com/vkbo/novelWriter/discussions

User Guide, Release 2.7.2

10.2 Layout Tricks

How do I create a table?

The formatting tools available in novelWriter don’t allow for complex structures like tables. However,
the editor does render tabs in a similar way that regular word processors do. You can set the width of a
tab in Preferences.

The tab key should have the same distance in the editor as in the viewer, so you can align text in columns
using the tab key, and it should look the same when viewed next to the editor.

This is most suitable for your notes, as the result in exported documents cannot be guaranteed to match.
Especially if you don’t use the same font in your manuscript as in the editor.

How do I force a line break when line breaks are ignored in my manuscript?

In the Manuscript Build Settings you can choose to ignore line breaks within paragraphs in your text.
However, some times you still need those breaks. Like for instance on the cover page where you may
need to add your name and address. In such cases, you can add [br] where you want line breaks. These
breaks cannot be ignored by any settings and will always be respected.

New in version 2.6.

How do I turn off first line indent for a specific paragraph?

If you have first line indent enabled, but have a specific paragraph that you don’t want indented, you
can disable the indentation by explicitly adding text alignment. For instance by adding << to the end to
left-align it. Aligned paragraphs are not indented.

See Alignment and Indentation for more details.

10.3 Organising Your Text

How do I add introductory text to chapters?

Sometimes chapters have a short preface, like a brief piece of text or a quote to set the stage before the
first scene begins.

If you add separate files for chapters and scenes, the chapter file is the perfect place to add such text.
Separating chapter and scene files also allows you to make scene files child documents of the chapter.

32 Chapter 10. Tips & Tricks

User Guide, Release 2.7.2

How do I distinguishing between soft and hard scene breaks?

Depending on your writing style, you may need to separate between soft and hard scene breaks within
chapters. Like for instance if you switch point-of-view character often.

In such cases you may want to use different scene headings for hard and soft scene breaks. The Build
Manuscript tool will let you define a different format for scenes using the ### and ###! heading codes
when you generate your manuscript. You can for instance add the common “* * *” for hard breaks
and select to hide soft scene breaks, which will just insert an empty paragraph in their place. See Build
Settings for more details.

New in version 2.4.

10.4 Other Tools

How do I convert my project to/from the yWriter format?

There is a tool available that lets you convert a yWriter project to a novelWriter project, and vice versa.

The tool is available at peter88213.github.io/yw2nw

10.4. Other Tools 33

http://spacejock.com/yWriter7.html
https://peter88213.github.io/yw2nw/

User Guide, Release 2.7.2

34 Chapter 10. Tips & Tricks

CHAPTER

ELEVEN

THE MAIN WINDOW

The user interface of novelWriter is intended to be as minimalistic as practically possible, while at the
same time provide useful features needed for writing a novel.

The main window does not by default have an editor toolbar like many other applications do. This reduces
clutter, and since the documents are formatted with style tags, it is not needed most of the time. Still, a
small formatting toolbar can be popped out by clicking the left-most button in the header of the document
editor. It gives quick access to standard formatting codes.

Most formatting features supported are also available through keyboard shortcuts, as well as available in
the main menu under Format, so you don’t have to look up formatting codes every time you need them.
For reference, a list of all shortcuts can be found in the Keyboard Shortcuts section.

On the left side of the main window you will find a sidebar. This bar has buttons for the standard views
you can switch between, a quick link to the Build Manuscript tool, and a set of project-related tools and
quick access to settings at the bottom.

11.1 Project Tree and Editor View

When Project Tree View in the sidebar is selected, the work area is split in two, or optionally three,
panels. The left-most panel contains the project tree and all the documents in your project. The second
panel is the document editor.

An optional third panel on the right side contains a document viewer which can view any document in
your project independently of what is open in the document editor. This panel is not intended as a preview
window, although you can use it for this purpose if you wish. For instance if you need to check that the
formatting tags behave as you expect. However, the main purpose of the viewer is for viewing your notes
next to your editor while you’re writing.

The editor also has a Focus Mode you can toggle either from the menu, from the icon in the editor’s
header, or by pressing F8. When Focus Mode is enabled, all the user interface elements other than the
document editor itself are hidden away.

The project tree will highlight with a different background colour the document that is currently open in
the editor.

35

User Guide, Release 2.7.2

Fig. 1: A screenshot of the Project Tree and Editor View.

11.1.1 Drag & Drop

The project tree allows drag & drop so you to reorder your documents and folders. Moving a document
in the project tree will affect the text’s position when you assemble your manuscript in the Manuscript
Build tool.

Documents and their folders can be rearranged freely within their root folders. If you move a Novel
Document out of a Novel folder, it will be converted to a Project Note. Notes can be moved freely
between all root folders, but keep in mind that if you move a note into a Novel type root folder, its
“Importance” setting will be replaced by a “Status” setting. See Importance and Status for more details.
The old value will not be overwritten though, and should be restored if you move it back at some point.

Root folders in the project tree cannot be dragged and dropped at all. If you want to reorder them, you
can move them up or down with respect to each other using the arrow buttons at the top of the project
tree, or by pressing Ctrl+Up or Ctrl+Down when they are selected.

Tip: You can drag and drop documents onto the editor or viewer panel to open them.

New in version 2.6.

Tip: You can now select multiple items in the project tree by holding down the Ctrl or Shift key
while selecting items.

New in version 2.2.

36 Chapter 11. The Main Window

User Guide, Release 2.7.2

11.2 Novel View and Editor View

Fig. 2: A screenshot of the Novel Tree and Editor View.

When Novel Tree View in the sidebar is selected, the project tree is replaced by an overview of your
novel structure for a specific Novel type root folder. Instead of showing individual documents, the tree
now shows all headings of your text. This includes multiple headings within the same document.

Each heading is indented according to the heading level, not its parent/child relationship to other elements
of your project. You can open and edit your novel documents from this view as well. All headings
contained in the currently open document should be highlighted in the view to indicate which ones belong
together in the same document.

If you have multiple Novel type root folders, the header of the novel view becomes a dropdown box. You
can then switch between them by clicking the Outline of . . . text. You can also click the novel icon button
next to it.

Generally, the novel view should update when you make changes to the novel structure, including edits
of the current document in the editor. The information is only updated when the automatic save of the
document is triggered, or you manually press Ctrl+S to save changes. (You can adjust the auto-save
interval in Preferences.) You can also regenerate the whole novel view by pressing the refresh button in
the novel view header.

It is possible to show an optional third column in the novel view. The settings are available from the
menu button in the toolbar.

If you click the triangular icon to the right of each item, a tooltip will pop out showing all the meta data
collected for that heading.

Note: You cannot reorganise the entries in the novel view, or add any new documents, as that would
imply restructuring the content of the documents themselves. Any such editing must be done in the
project tree. However, you can add new headings to existing documents, or change references, which

11.2. Novel View and Editor View 37

User Guide, Release 2.7.2

will be updated in this view when the document is saved.

11.3 Novel Outline View

Fig. 3: A screenshot of the Novel Outline View.

When Novel Outline View in the sidebar is selected, the tree, editor and viewer are replaced by a table
that shows the entire novel structure with all the tags and references listed. You can select which novel
folder to display from the dropdown menu. You can optionally choose to show a combination of all novel
folders.

Pretty much all collected meta data is available in this view. You can select which columns to display
from the menu button. This includes various meta data and information extracted from your Tags and
References. The order of the columns can also be changed by dragging them to a different position. You
column settings are saved between sessions on a per-project basis.

Note: The Title column cannot be disabled or moved.

The information viewed in the outline is based on the project index. While novelWriter does its best to
keep the index up to date when contents change, you can always rebuild it manually by pressing F9 if
something isn’t right.

The outline view itself can be regenerated by pressing the refresh button. By default, the content is
refreshed each time you switch to this view.

The Synopsis column of the outline view takes its information from a specially formatted comment. See
Synopsis or Description Comments.

38 Chapter 11. The Main Window

User Guide, Release 2.7.2

11.4 Project Search

A global search tool is available from the side bar. It allows you to search through your entire project.
The tool does not provide a replace feature. There is a search and replace tool available in the document
editor that acts on the open document. See Search & Replace for more details.

New in version 2.4.

11.5 Switching Focus

If the project or novel view does not have focus, pressing Ctrl+T switches focus to whichever of the two
is visible. If one of them already has focus, the key press will switch between them instead.

Likewise, pressing Ctrl+E will switch focus to the document editor or viewer, or if any of them already
have focus, it will switch focus between them.

These two shortcuts make it possible to jump between all these GUI elements without having to reach
for the mouse or touchpad.

See Keyboard Shortcuts for more details.

11.6 Colour Themes

By default, novelWriter uses a light colour theme. You can also choose between a standard dark theme
that have neutral colours, or a series of other included themes, from Preferences.

If you wish, you can create your own colour themes, and even have them added to the application. See
Syntax and GUI Themes for more details.

Switching the GUI colour theme does not affect the colours of the editor and viewer. They have separate
themes selectable from the “Document colour theme” setting in Preferences. They are separated because
there are a lot more options to choose from for the editor and viewer.

Note: If you switch between light and dark mode on the GUI, you should also switch editor theme to
match, otherwise icons may be hard to see in the editor and viewer.

11.4. Project Search 39

User Guide, Release 2.7.2

40 Chapter 11. The Main Window

CHAPTER

TWELVE

MANAGING PROJECTS

Your text in novelWriter is organised into projects. Each project is meant to contain one novel and
associated notes. If you have multiple novels in a series, with the same characters and shared notes, it is
also possible to keep all of them in the same project by creating multiple Novel root folders. See How
Root Folders Work for more details.

12.1 Creating A New Project

You can create a new project from the Project menu by selecting Create or Open Project. This will
open the Welcome dialog, where you can select the New button that will assist you in creating a project.
This dialog is also displayed when you start novelWriter.

A novelWriter project requires a dedicated folder for storing its files on the local file system. If you’re
interested in the details of how projects are stored, you can have a look at the section How Data is Stored.

A list of recently opened projects is maintained, and displayed in the Welcome dialog. A project can be
removed from this list by selecting it and pressing the Del key or by right-clicking it and selecting the
Remove Project option.

Fig. 1: The project list (left) and new project form (right) of the Welcome dialog.

Project-specific settings are available in Project Settings in the Project menu. See further details below
in the Project Settings section.

Details about the project’s novel text, including word counts, and a table of contents with word and page
counts, is available through the Novel Details dialog. Statistics about the project is also available in the
Manuscript Build tool.

41

User Guide, Release 2.7.2

12.1.1 Template Projects

From the Welcome dialog you can also create a new from another existing project. If you have a specific
structure you want to use for all your new projects, you can create a dedicated project to be used as a
template, and select to copy an existing project from the “Prefill Project” option from the New Project
form.

12.2 Project Settings

The Project Settings can be accessed from the Project menu, or by pressing Ctrl+Shift+,. This will
open a dialog box, with a set of tabs.

12.2.1 General Settings

The Settings tab holds the project name, author, and language settings.

The Project Name can be edited here. It is used for the main window title and for generating backup
files. So keep in mind that if you do change this setting, the backup file names will change too.

You can also change the Author and Project Language setting. These are only used when building the
manuscript, for some formats. The language setting is also used when inserting text into documents in
the viewer, like for instance labels for keywords and special comments.

If your project is in a different language than your main spell checking language is set to, you can override
the default setting here. The project language can also be changed from the Tools menu.

You can also override the automatic backup setting for the project if you wish.

12.2.2 Status and Importance

Each document or folder of type Novel can be given a “Status” label accompanied by a coloured icon with
an optional shape selected from a list of pre-defined shapes. Each document or folder of the remaining
types can be given an “Importance” label with the same customisation options.

These labels are there purely for your convenience, and you are not required to use them for any other
features to work. No other part of novelWriter accesses this information. The intention is to use these to
indicate at what stage of completion each novel document is, or how important the content of a note is to
the story. You don’t have to use them this way, that’s just what they were intended for, but you can make
them whatever you want.

Both status and importance labels can be exported and imported so you can share them between projects,
or define a standard set for all your writing projects. When you import labels to a project, they are always
added as new labels.

See also Importance and Status.

Note: Status or importance level currently in use cannot be deleted, but they can be edited.

42 Chapter 12. Managing Projects

User Guide, Release 2.7.2

12.2.3 Text Auto-Replace

A set of automatically replaced keywords can be added in this tab. The keywords in the left column will
be replaced by the text in the right column when documents are opened in the viewer. They will also be
applied to manuscript builds.

The auto-replace feature will replace text in angle brackets that is in this list. The syntax highlighter will
add an alternate colour to text matching the syntax, but it doesn’t check if the text is in this list.

Note: A keyword cannot contain spaces. The angle brackets are added by default, and when used in the
text are a part of the keyword to be replaced. This is to ensure that parts of the text aren’t unintentionally
replaced by the content of the list.

12.3 Backup

An automatic backup system is built into novelWriter. In order to use it, a backup path to where the
backup files are to be stored must be provided in Preferences. The path defaults to a folder named
“Backups” in your home directory.

Backups can run automatically when a project is closed, which also implies it is run when the application
itself is closed. Backups are date stamped zip files of the project files in the project folder (files not
strictly a part of the project are ignored). The zip archives are stored in a subfolder of the backup path.
The subfolder will have the same name as the Project Name defined in Project Settings.

The backup feature, when configured, can also be run manually from the Tools menu. It is also possible
to disable automated backups for a given project in Project Settings.

Note: For the backup to be able to run, the Project Name must be set in Project Settings. This value is
used to generate the name and path of the backups. Without it, the backup will not run at all, but it will
produce a warning message.

12.3. Backup 43

User Guide, Release 2.7.2

44 Chapter 12. Managing Projects

CHAPTER

THIRTEEN

THE EDITOR AND VIEWER

This chapter covers in more detail how the document editor and viewer panels work.

13.1 Editing a Document

Fig. 1: A screenshot of the Document Editor panel.

To edit a document, double-click it in the project tree, press the Return key while having it selected, or
drag and drop it onto the editor panel. This will open the document in the document editor.

The editor has a maximise button, which toggles the Focus Mode, and a close button in the top–right
corner. On the top–left side you will find a tools button that opens a toolbar with a few buttons for

45

User Guide, Release 2.7.2

applying text formatting, a drop down menu for navigating between headings, and a search button to
open the search dialog.

Both the document editor and viewer will show the label of the currently open document in the header
at the top of the edit or view panel. Optionally, the full project path to the document can be shown. This
can be set in Preferences.

Tip: Clicking on the document title bar will select the document in the project tree and thus reveal its
location there, making it easier to find in a large project.

Any references in the editor can be opened in the viewer by moving the cursor to the label and pressing
Ctrl+Return. You can also control-click them with your mouse.

13.1.1 Spell Checking

A third party library called Enchant is used for spell checking in the editor. The controls for spell checking
are found in the Tools menu. You can also set spell checking language in Project Settings.

This spell checking library comes with support for custom words that you can add by selecting “Add Word
to Dictionary” from the context menu when a word is highlighted by the spell checker as misspelled. The
custom words are managed on a per-project basis, and the list of words can be edited from the Project
Word List tool available from the Tools menu.

Note: Generally, spell checking dictionaries are collected from your operating system, but on Windows
they are not. See Spell Check Dictionaries for how to add spell checking dictionaries on Windows.

13.1.2 Word Counts

A character, word, and paragraph count is maintained for each document, as well as for each section of a
document following a heading. The word count and change of words in the current session is displayed
in the footer of any document open in the editor, and all stats are shown in the details panel below the
project tree for any document selected in the project or novel trees.

The word counts are not updated in real time, but run in the background every few seconds for as long as
the document is being actively edited.

A total project word count is displayed in the status bar. The total count depends on the sum of the values
in the project tree, which again depend on an up to date project index. If the counts seem wrong, a full
project word recount can be initiated by rebuilding the project’s index. Either from the Tools menu, or
by pressing F9.

The rules for how the counts are made is covered in more detail in Word and Text Counts.

Tip: For some languages, character count is the more interesting statistics. You can select to display
character count instead of word count in the user interface in Preferences.

New in version 2.7.

46 Chapter 13. The Editor and Viewer

User Guide, Release 2.7.2

13.2 Search & Replace

Fig. 2: A screenshot of the Document Editor search box.

The document editor has a search and replace tool that can be activated with Ctrl+F for search mode or
Ctrl+H for search and replace mode.

Pressing Return while in the search box will search for the next occurrence of the word, and
Shift+Return for the previous. Pressing Return in the replace box, will replace the highlighted text
and move to the next result.

There are a number of settings for the search tool available as toggle switches above the search box.
They allow you to search for, in order: matched case only, whole word results only, search using regular
expressions, loop search when reaching the end of the document, and move to the next document when
reaching the end. There is also a switch that will try to match the case of the word when the replacement
is made. That is, it will try to keep the word upper, lower, or capitalised to match the word being replaced.

13.3 Auto-Replace as You Type

A few auto-replace features are supported by the editor. You can control every aspect of the auto-replace
feature from Preferences. You can also disable this feature entirely if you wish.

Tip: If you don’t like auto-replacement, all symbols inserted by this feature are also available in the
Insert menu, and via Insert Shortcuts. You may also be using a Compose Key setup, which means you
may not need the auto-replace feature at all.

The editor is able to replace two and three hyphens with short and long dashes, four dashes with a hori-
zontal bar, three dots with ellipsis, and replace straight single and double quotes with user-defined quote
symbols. It will also try to determine whether to use the opening or closing symbol, although this fea-
ture isn’t always accurate. Especially distinguishing between closing single quote and apostrophe can be
tricky for languages that use the same symbol for these, like English does.

Tip: If the auto-replace feature changes a symbol when you did not want it to change, pressing Ctrl+Z
once after the auto-replacement will undo it without undoing the character you typed.

13.2. Search & Replace 47

https://en.wikipedia.org/wiki/Compose_key

User Guide, Release 2.7.2

13.4 Viewing a Document

Fig. 3: A screenshot of the Document Viewer panel.

Any document in the project tree can also be viewed in parallel in a right hand side document viewer.
To view a document, press Ctrl+R, select View Document in the menu or context menu, or drag and
drop the document onto the viewer panel. If you have a middle mouse button, middle-clicking on the
document will also open it in the viewer.

The document viewed does not have to be the same document as the one currently being edited. However,
If you are viewing the same document, pressing Ctrl+R from the editor will update the document with
your latest changes. You can also press the reload button in the top–right corner of the viewer panel, next
to the close button, to achieve the same thing.

In the viewer, references become clickable links. Clicking them will replace the content of the viewer
with the content of the document the reference points to.

The document viewer keeps a history of viewed documents, which you can navigate with the arrow
buttons in the top–left corner of the viewer. If your mouse has backward and forward navigation buttons,
these can be used as well. They work just like the backward and forward features in a browser. The
left-most button is a dropdown menu for quickly navigation between headings in the document. The edit
button on the right will open the viewed document in the editor.

48 Chapter 13. The Editor and Viewer

User Guide, Release 2.7.2

13.4.1 Document References

At the bottom of the viewer panel you will find a References panel. (If it is hidden, click the button on the
left side of the footer area to reveal it.) This panel contains a References tab with links to all documents
referring back to the one you’re currently viewing, if any has been defined. If you have created root
folders and tags for various story elements like characters and plot points, these will appear as additional
tabs in this panel.

Note: The References panel relies on an up-to-date project index. The index is maintained automat-
ically. However, if anything is missing, or seems wrong, the index can always be rebuilt by selecting
Rebuild Index from the Tools menu, or by pressing F9.

New in version 2.2: The reference panel was redesigned and the additional tabs added.

13.4. Viewing a Document 49

User Guide, Release 2.7.2

50 Chapter 13. The Editor and Viewer

CHAPTER

FOURTEEN

SPLIT AND MERGE DOCUMENTS

Under the Transform submenu in the context menu of an item in the project tree, you will find several
options on how to change a document or folder. This includes changing between document and note, but
also splitting them into multiple documents, or merging child items into a single document.

14.1 Splitting Documents

Fig. 1: The Split Document dialog.

The Split Document by Headings option will open a dialog that allows you to split the selected document
into multiple new documents based on the headings it contains. You can select at which heading level
the split is to be performed from the dropdown box. The list box will preview which headings will be
split into new documents.

51

User Guide, Release 2.7.2

You are given the option to create a folder for these new documents, and whether or not to create a
hierarchy of documents. That is, put sections under scenes, and scenes under chapters.

The source document is not deleted in the process, but you have the option to let the tool move the source
document to the Trash folder.

14.2 Merging Documents

Fig. 2: The Merge Documents dialog.

You have two options for merging documents that are child elements of another document. You can
either Merge Child Items into Self and Merge Child Items into New. The first option will pull all
content of child items and merge them into the parent document, while the second option will create a
new document in the process.

When merging documents in a folder, only the latter option is possible, so only the choice Merge Doc-
uments in Folder is available.

In either case, the Merge Documents dialog will let you exclude documents you don’t want to include,
and it also lets you reorder them if you wish.

52 Chapter 14. Split and Merge Documents

CHAPTER

FIFTEEN

BUILDING THE MANUSCRIPT

You can at any time build a manuscript, an outline of your notes, or any other type of document from the
text in your project. All of this is handled by the Manuscript Build tool. You can activate it from the
sidebar, the Tools menu, or by pressing F5.

Note: The term “Build” in this context means to assemble or generate a single document from a selection
of your project documents. You can select between multiple standard document formats.

New in version 2.1: This tool is new for version 2.1. A simpler tool was used for earlier versions.

15.1 The Manuscript Build Tool

Fig. 1: The Manuscript Build tool main window.

The main window of the Manuscript Build tool contains a list of all the builds you have defined, a
selection of settings, and a few buttons to generate preview, open the print dialog, or run the build to
create a manuscript document.

53

User Guide, Release 2.7.2

15.1.1 Outline and Word Counts

Fig. 2: The Manuscript Build tool main window with the Outline visible.

The Outline tab on the left lets you navigate the headings in the preview document. It will show up to
scene level headings for novel documents, and level 2 headings for notes.

A collapsible panel of word and character counts is also available below the preview pane. These are
calculated from the text you have included in the document, and are more accurate counts than what’s
available in the project tree since they are counted after formatting.

For a detailed description on how they are counted, see Word and Text Counts.

15.2 Build Settings

You can edit a build definition by opening it in the Manuscript Build Settings dialog, either by double-
clicking or by selecting it and pressing the edit button in the toolbar.

Tip: You can keep the Manuscript Build Settings dialog open while testing the different options, and
just hit the Apply button. You can test the result of your settings change by pressing the Preview button
in the main Manuscript Build window. When you’re happy with the result, you can close the settings.

54 Chapter 15. Building the Manuscript

User Guide, Release 2.7.2

15.2.1 Document Selection

Fig. 3: The Selections page of the Manuscript Build Settings dialog.

The Selections page of the Manuscript Build Settings dialog allows you to fine tune which documents
are included in the build. The included documents are indicated by an icon in the last column. On the
right you have some filter options for selecting content of a specific type, and a set of switches for which
root folders to include.

You can override the result of these filters by marking one or more documents and selecting to explicitly
include or exclude them by using the buttons below the tree view. The last button can be used to reset
the override and return control to the filter settings.

In the figure, the orange icon and the blue icon indicates which documents are included, and the red icon
indicates that a document is explicitly excluded.

By default, inactive documents are excluded, but you can override this in the filter settings. See Active
and Inactive Documents for more details.

15.2.2 Formatting Headings

The Headings page of the Manuscript Build Settings dialog allows you to set how the headings in
your Novel Documents are formatted. By default, the title is just copied as-is, indicated by the {Title}
format. You can change this to for instance add chapter numbers and scene numbers, or insert character
names, like shown in the figure above.

Clicking the edit button next to a format will copy the formatting string into the edit box where it can be
modified, and where a syntax highlighter will help indicate which parts are automatically generated by

15.2. Build Settings 55

User Guide, Release 2.7.2

Fig. 4: The Headings page of the Manuscript Build Settings dialog.

the build tool. The Insert button is a dropdown list of these formats, and selecting one will insert it at the
position of the cursor.

Any text you add that isn’t highlighted in colours will remain in your formatted titles. {Title} will
always be replaced by the text in the heading from your documents.

Table 1: Heading Formats

Code Description
{BR} Insert a line break.
{Title} Insert the original title text.
{Chapter} Insert a chapter number.
{Chapter:Word} Insert a chapter number as a word.
{Chapter:URoman} Insert a chapter number as an upper case Roman numeral.
{Chapter:LRoman} Insert a chapter number as an lower case Roman numeral.
{Scene} Insert a scene number within the current chapter.
{Scene:Abs} Insert a scene number unique to the whole manuscript.
{Char:POV} Insert the point-of-view character’s display name.
{Char:Focus} Insert the focus character’s display name.

You can preview the result of these format strings by clicking Apply, and then clicking Preview in the
Manuscript Build tool main window.

56 Chapter 15. Building the Manuscript

User Guide, Release 2.7.2

Automatic Numbering

The headings formatter allows you to automatically insert chapter and scene numbers into your headings.
The automatic chapter number counter will skip all chapter headings marked as unnumbered using the
heading format described in Heading Levels.

Scene numbers are mostly intended for use in a draft manuscript. You can either insert absolute scene
numbers that counts every scene in the novel, or you can insert per-chapter scene numbers that reset to 1
for each new chapter.

Example

This will create a chapter title on the format “Chapter 1: Title Text”:

Chapter {Chapter}: {Title}

This will create a scene title on the format “Scene 1.1: Title Text”:

Scene {Chapter}.{Scene}: {Title}

Scene Separators

If you don’t want any titles for your scenes (or for your sections if you have them), you can leave the
formatting boxes empty. If so, an empty paragraph will be inserted between the scenes or sections instead,
resulting in a gap in the text. You can also enable the Hide setting, which will ignore them completely.
That is, there won’t even be an extra gap inserted.

Alternatively, if you want a separator text between them, like the common * * *, you can enter the
desired separator text as the format. If the format is any piece of static text, it will always be treated as
a separator. A static separator is only inserted between scenes, as opposed to a formatted heading which
is also inserted before the first scene of a chapter.

Hard and Soft Scenes

If you wish to distinguish between so-called soft and hard scene breaks, you can use the alternative scene
heading format in your text. You can then give these headings a different formatting in the Headings
settings.

See Heading Levels for more info on how to format alternative scene headings in your text.

15.2.3 Output Settings

The Formatting sections of the Manuscript Build Settings dialog control a number of other settings
for the output. This includes formatting, but also what content is included. You can for instance select to
include comments, synopsis. tags and reference, and even exclude the body text itself.

15.2. Build Settings 57

User Guide, Release 2.7.2

15.3 Building Manuscript Documents

Fig. 5: The Manuscript Build dialog used for writing the actual manuscript documents.

When you press the Build button on the Build Manuscript tool main window, a special file dialog opens
up. This is where you pick your desired output format and where to write the file.

On the left side of the dialog is a list of all the available file formats, and on the right, a list of the
documents which are included based on the build definition you selected. You can choose an output
path, and set a base file name as well. The file extension will be added automatically.

To generate the manuscript document, press the Build button. A small progress bar will show the build
progress, but for small projects it may pass very fast.

15.3.1 File Formats

The following document formats are supported:

Open Document
The Build tool can produce either an .odt file, or an .fodt file. The latter is just a flat version of
the document format as a single XML file. Most rich text editors support the former, and only a
few the latter.

Microsoft Word Document
The Microsoft Word Document format writes a single .docx file. It uses a fairly basic format that
should be compatible with most rich text editors.

Portable Document Format (PDF)
The PDF is generated from a copy of the preview document, and should have the same formatting
capabilities as the preview. It’s identical to what is produced if you select the print option and print
to PDF.

novelWriter HTML
The HTML format writes a single .htm file with minimal style formatting. The HTML document
is suitable for further processing by document conversion tools like Pandoc, for importing in word
processors, or for printing from browser.

58 Chapter 15. Building the Manuscript

https://pandoc.org/

User Guide, Release 2.7.2

Standard/Extended Markdown
The Markdown format comes in both Standard and Extended flavour. The only difference in terms
of novelWriter functionality is the support for strike through text, which is not supported by the
Standard flavour.

novelWriter Markup
This is simply a concatenation of the project documents selected by the filters into a .txt file. The
documents are stacked together in the order they appear in the project tree, with comments, tags,
etc. included if they are selected. This is a useful format for exporting the project for later import
back into novelWriter.

New in version 2.6: Microsoft Word and PDF output options were added.

15.3.2 Additional Formats

In addition to the above document formats, the novelWriter HTML and Markup formats can also be
wrapped in a JSON file. These files will have a meta data entry and a body entry.

The text body is saved in a two-level list. The outer list contains one entry per document, in the order they
appear in the project tree. Each document is then split up into a list as well, with one entry per paragraph
it contains.

These files are mainly intended for scripted post-processing for those who want that option. A JSON file
can be imported directly into a Python dict object or a PHP array, to mentions a few options.

15.4 Printing

The Print button allows you to print the content in the preview window. You can either print to one of
your system’s printers, or select PDF as your output format from the printer icon on the print dialog.

Note: The paper format should default to whatever your system default is. If you want to change it, you
have to select it from the Print Preview dialog.

15.4. Printing 59

User Guide, Release 2.7.2

60 Chapter 15. Building the Manuscript

CHAPTER

SIXTEEN

WRITING STATISTICS

When you work on a project, a log file records when you opened it, when you closed it, and the total word
counts of your novel documents and notes at the end of the session, provided that the session lasted either
more than 5 minutes, or that the total word count changed. For more details about the log file itself, see
How Data is Stored.

A tool to view the content of the log file is available in the Tools menu under Writing Statistics. You
can also launch it by pressing F6, or find it on the sidebar.

The tool will show a list of all your sessions, and a set of filters to apply to the data. You can also export
the filtered data to a JSON file or to a CSV file that can be opened by a spreadsheet application like for
instance Libre Office Calc or Excel.

16.1 Idle Time

The log file stores how much of the session time was spent idle. The definition of idle here is that the
novelWriter main window loses focus, or the user hasn’t made any changes to the currently open document
in five minutes. You can change the number of minutes in Preferences.

16.2 Session Timer

A session timer is by default visible in the status bar. The icon will show you a clock icon when you are
active, and a pause icon when you are considered “idle” per the criteria mentioned above.

If you do not wish to see the timer, you can click on it once to hide it. The icon will still be visible. Click
the icon once more to display the timer again.

New in version 2.6: As of version 2.6, clicking the timer text or icon in the status bar will toggle its
visibility.

61

User Guide, Release 2.7.2

62 Chapter 16. Writing Statistics

CHAPTER

SEVENTEEN

DIALOGUE HIGHLIGHTING

Dialogue recognition and colour highlighting is available both while you’re writing and in generated
manuscript documents.

The default language settings in novelWriter are for English. That includes the dialogue highlighting
settings. But many dialogue styles are supported. You can tune a number of settings to fit your language
and style preferences in the “Text Highlighting” section in Preferences. You can mix and match these
settings.

Fig. 1: The Text Highlighting section of Preferences.

17.1 Quoted Dialogue

By default, dialogue highlighting is enabled for the double quote symbols you have defined in the Quo-
tation Style section of Preferences.

You can change which quote symbols are highlighted by selecting one of “None”, “Single”, “Double”,
or “Both” from the “Highlight dialogue” setting under Text Highlighting.

You can also enable or disable the “Allow open-ended dialogue” setting to allow for the style where
multi-paragraph dialogue is not closed until the last paragraph.

63

User Guide, Release 2.7.2

Fig. 2: The Quotation Style section of Preferences.

Limitations

Dialogue highlighting for single quotes is difficult to process when the same single quote symbol is
also used for apostrophes. There isn’t a good solution to this. Your best option in the cases where
the highlighting is wrong is to insert an alternative apostrophe symbol instead. See Modifier Letter
Apostrophe for more details.

17.2 Alternative Dialogue

You can use the “Alternative dialogue symbols” setting for custom dialogue wrapper symbols. These are
highlighted in a different colour than regular dialogue.

The intended use case here is if you use an alternative style to distinguish a different style of communi-
cation. The feature idea came from a science fiction series where mind-to-mind communication used a
different quotation style.

17.3 Dialogue Line Symbols

In some languages, a single symbol at the start of a paragraph can indicate that the whole paragraph is
dialogue. For instance, this symbol can be a short dash (en dash).

Fig. 3: An example of dialogue starting with a short dash.

64 Chapter 17. Dialogue Highlighting

User Guide, Release 2.7.2

You can enable this feature by adding the symbols to the “Dialogue line symbols” setting. Multiple
symbols are allowed.

17.4 Dialogue with Narrator Break

The dialogue symbol setting will not detect if the dialogue ends in the paragraph. In some styles there
is no way to actually indicate the switch from dialogue to narration; in others there are. These a narrator
break symbols are usually dashes. You can select one of the supported dash symbols for narrator breaks.
These can be used with any of the above dialogue recognition settings.

Fig. 4: An example of dialogue starting with a short dash and a long dash narrator break.

17.5 Alternating Dialogue and Narration

The alternating dialogue and narration style is supported with the “Alternating dialogue/narration sym-
bol” setting. It can be set to one of the supported dashes. This style will switch into dialogue mode when
it first encounters the selected dash in a paragraph, and switch back out when it sees the next one, and so
forth.

Fig. 5: An example of alternating dialogue and narration using a long dash.

17.4. Dialogue with Narrator Break 65

User Guide, Release 2.7.2

66 Chapter 17. Dialogue Highlighting

CHAPTER

EIGHTEEN

STORY COMMENTS

A special set of comment styles allow for annotating your text with structure information. There are two
styles of comments available. They are an extension to regular comments as described in Comments and
Notes.

New in version 2.7.

18.1 Story Structure Comments

You can annotate story structure by using the %Story style of comment. To use the feature, make the
first word of a comment Story, followed by a period, a structure term, a colon, a space and the text for
that term.

18.1.1 Usage

The story term can be anything that you want to track in the manuscript. This construct is intended to
make it easier to extract metadata from a work to perform a structural analysis of the story.

There are probably as many ways to examine story structure as there are authors and editors combined.
For this reason the story tag is flexible. You can use any terms you want and track any aspect of the story
that serves your purposes.

An example method has been advanced by Shawn Coyne in The Story Grid. This method asserts that a
story is composed of “beats”, and that each beat has an inciting incident, a complication, a crisis, and a
resolution. One might capture these elements of a beat where a character overcomes their fear of giving
a speech as:

Example

Scene

%Synopsis: Carol overcomes her fear of giving a speech.

%Story.incite: Carol is pleased to be invited to a conference to see her boss␣
→˓deliver a keynote.
%Story.complication: Carol's boss calls in sick and asks her to deliver a big␣
→˓speech.
%Story.crisis: Carol has a fear of appearing on stage.
%Story.resolution: Carol engages the help of a coach who helps her overcome␣
→˓her fears and delivers a great speech.

67

User Guide, Release 2.7.2

Other analytical models propose tracking a scene’s pace, how it affects the mood of the story, or which
element(s) of the story’s genre are being satisfied. An author can use this mechanism to track any element
of a scene. Some examples include time of day, how much time passes in the scene, or even the physical
form of a shape-shifting character. If a story involves magic, one could track which wand a main character
has in hand. It’s up to tha author.

When the story and other scene metadata is extracted into a tabular form, it is possible to get a compre-
hensive overview of the story and to identify possible issues. For example, so many fast-paced scenes
without a break that readers might become fatigued or over-stimulated.

18.1.2 Output

The story structure comments can be included in the manuscript, and are formatted similarly to the
synopsis comments:

Fig. 1: A set of story structure comments as shown in the Manuscript tool.

When you export your project data from the Outline View, all story structure terms are added as columns
to the exported file, which can then be opened in the spread sheet software of your choice.

18.2 Story Notes

Story notes are similar to story structure comments, but have no predefined meaning. Essentially they
are a generalisation of the story structure comment, and the only point of having this additional format
is to allow you do filter them in and out of your manuscript independently.

You can annotate story notes by using the %Note style of comment. To use the feature, make the first
word of a comment Note, followed by a period, a term, a colon, a space and the text for the note.

68 Chapter 18. Story Comments

User Guide, Release 2.7.2

18.2.1 Usage

These notes are free form, but one intended use case is to add consistency annotations to your text to
remind yourself where you have described something that must be checked against other parts of your
text later on.

Example

Scene

%Synopsis: Carol overcomes her fear of giving a speech.

%Note.consistency: This is the first time in the story Carol gives a speech.

18.2.2 Output

Story notes are included in the manuscript in exactly the same way story structure comments are, but has
a separate inclusion setting in the build settings. They are also included in CSV exports from the Outline
View.

18.2. Story Notes 69

User Guide, Release 2.7.2

70 Chapter 18. Story Comments

CHAPTER

NINETEEN

KEYBOARD SHORTCUTS

Most features in novelWriter are available as keyboard shortcuts. This is a reference list of those shortcuts.
Most of them are also listed in the application’s user interface.

Note: On MacOS, replace Ctrl with Cmd.

19.1 Main Window Shortcuts

Shortcut Description
F1 Open the online user manual
F5 Open the Build Manuscript tool
F6 Open the Writing Statistics tool
F8 Toggle Focus Mode
F9 Re-build the project’s index
F11 Toggle full screen mode
Ctrl+, Open the Preferences dialog
Ctrl+E Switch or toggle focus for the editor or viewer
Ctrl+T Switch or toggle focus for the project tree or novel view
Ctrl+Q Exit novelWriter
Ctrl+Shift+, Open the Project Settings dialog
Ctrl+Shift+O Open the Welcome dialog to open or create a project
Ctrl+Shift+S Save the current project
Ctrl+Shift+T Switch focus to the outline view
Ctrl+Shift+W Close the current project
Shift+F1 Open the local user manual (PDF) if it is available
Shift+F6 Open the Project Details dialog

71

User Guide, Release 2.7.2

19.2 Project Tree Shortcuts

Shortcut Description
F2 Edit the label of the selected item
Return Open the selected document in the editor
Alt+Up Jump or go to the previous item at same level in the tree
Alt+Down Jump or go to the next item at same level in the tree
Alt+Left Jump to the parent item in the tree
Alt+Right Jump to the first child item in the project tree
Ctrl+. Open the context menu on the selected item
Ctrl+L Open the Quick Links menu
Ctrl+N Open the Create New Item menu
Ctrl+O Open the selected document in the editor
Ctrl+R Open the selected document in the viewer
Ctrl+Up Move selected item one step up in the tree
Ctrl+Down Move selected item one step down in the tree
Ctrl+Shift+Del Move the selected item to Trash

19.3 Document Editor Shortcuts

19.3.1 Text Search Shortcuts

Shortcut Description
F3 Find the next occurrence of the search word
Ctrl+F Open search and look for the selected word
Ctrl+G Find the next occurrence of the search word
Ctrl+H Open replace and look for the selected word (Mac Cmd+=)
Ctrl+Shift+1 Replace selected occurrence, and move to the next
Ctrl+Shift+G Find the previous occurrence of the search word
Ctrl+Shift+F Open project search and look for the selected word
Shift+F3 Find the previous occurrence of the search word

72 Chapter 19. Keyboard Shortcuts

User Guide, Release 2.7.2

19.3.2 Text Formatting Shortcuts

Shortcut Description
Ctrl+' Wrap selected text, or word under cursor, in single quotes
Ctrl+" Wrap selected text, or word under cursor, in double quotes
Ctrl+/ Toggle comment format for block or selected text
Ctrl+0 Remove format for block or selected text
Ctrl+1 Change block format to heading level 1
Ctrl+2 Change block format to heading level 2
Ctrl+3 Change block format to heading level 3
Ctrl+4 Change block format to heading level 4
Ctrl+5 Change block alignment to left-aligned
Ctrl+6 Change block alignment to centred
Ctrl+7 Change block alignment to right-aligned
Ctrl+8 Add a left margin to the block
Ctrl+9 Add a right margin to the block
Ctrl+B Format selected text, or word under cursor, with bold
Ctrl+D Format selected text, or word under cursor, with strike through
Ctrl+I Format selected text, or word under cursor, with italic
Ctrl+Shift+/ Remove format for block or selected text
Ctrl+Shift+D Toggle ignored text format for block or selected text

19.3.3 Other Editor Shortcuts

Shortcut Description
F7 Re-run the spell checker on the document
Ctrl+. Open the context menu at the current cursor location
Ctrl+A Select all text in the document
Ctrl+C Copy selected text to clipboard
Ctrl+K Activate the insert commands (see list in Insert Shortcuts)
Ctrl+R Open or reload the current document in the viewer
Ctrl+S Save the current document
Ctrl+V Paste text from clipboard to cursor position
Ctrl+W Close the current document
Ctrl+X Cut selected text to clipboard
Ctrl+Y Redo latest undo
Ctrl+Z Undo latest changes
Ctrl+Backspace Delete the word before the cursor
Ctrl+Del Delete the word after the cursor
Ctrl+F7 Toggle spell checking
Ctrl+Return Open the tag or reference under the cursor in the viewer
Ctrl+Shift+A Select all text in the current paragraph

19.3. Document Editor Shortcuts 73

User Guide, Release 2.7.2

19.3.4 Insert Shortcuts

A set of insert features are also available through shortcuts, but they require a double combination of key
sequences. The insert feature is activated with Ctrl+K, followed by a key or key combination for the
inserted content.

Shortcut Description
Ctrl+K, Space Insert a non-breaking space
Ctrl+K, _ Insert a long dash (em dash)
Ctrl+K, . Insert an ellipsis
Ctrl+K, ' Insert a modifier apostrophe
Ctrl+K, * Insert a list bullet
Ctrl+K, % Insert a per mille symbol
Ctrl+K, ~ Insert a figure dash (same width as a number)
Ctrl+K, – Insert a short dash (en dash)
Ctrl+K, 1 Insert a left single quote
Ctrl+K, 2 Insert a right single quote
Ctrl+K, 3 Insert a left double quote
Ctrl+K, 4 Insert a right double quote
Ctrl+K, C Insert a @char keyword
Ctrl+K, E Insert an @entity keyword
Ctrl+K, F Insert a @focus keyword
Ctrl+K, G Insert a @tag keyword
Ctrl+K, H Insert a short description comment
Ctrl+K, L Insert a @location keyword
Ctrl+K, M Insert a @mention keyword
Ctrl+K, O Insert an @object keyword
Ctrl+K, P Insert a @plot keyword
Ctrl+K, S Insert a synopsis comment
Ctrl+K, T Insert a @time keyword
Ctrl+K, V Insert a @pov keyword
Ctrl+K, X Insert a @custom keyword
Ctrl+K, Ctrl+Space Insert a thin non-breaking space
Ctrl+K, Ctrl+_ Insert a horizontal bar (quotation dash)
Ctrl+K, Ctrl+' Insert a prime
Ctrl+K, Ctrl+" Insert a double prime
Ctrl+K, Ctrl+* Insert a flower mark (alternative bullet)
Ctrl+K, Ctrl+– Insert a hyphen bullet (alternative bullet)
Ctrl+K, Ctrl+D Insert a division sign
Ctrl+K, Ctrl+O Insert a degree symbol
Ctrl+K, Ctrl+X Insert a times sign
Ctrl+K, Shift+Space Insert a thin space

74 Chapter 19. Keyboard Shortcuts

User Guide, Release 2.7.2

19.4 Document Viewer Shortcuts

Shortcut Description
Alt+Left Move backward in the view history
Alt+Right Move forward in the view history
Ctrl+C Copy selected text to clipboard
Ctrl+Shift+A Select all text in the current paragraph
Ctrl+Shift+R Close the document viewer

19.4. Document Viewer Shortcuts 75

User Guide, Release 2.7.2

76 Chapter 19. Keyboard Shortcuts

CHAPTER

TWENTY

WORD AND TEXT COUNTS

This is an overview of how words and other counts of your text are performed. The counting rules should
be relatively standard, and are comparable to Libre Office Writer rules.

The counts provided in the app on the raw text are meant to be approximate. For more accurate counts,
you need to build your manuscript in the Manuscript Tool and check the counts on the generated preview.

20.1 Text Word Counts and Stats

These are the rules for the main counts available for for each document in a project.

For all counts, the following rules apply.

1. Short (–) and long (—) dashes are considered word separators.

2. Any line starting with % or @ is ignored.

3. Trailing white spaces are ignored, including line breaks.

4. Leading > and trailing < are ignored with any spaces next to them.

5. Valid shortcodes and other commands wrapped in brackets [] are ignored.

6. In-line Markdown syntax in text paragraphs is treated as part of the text.

After the above preparation of the text, the following counts are available.

Character Count
The character count is the sum of characters per line, including leading and in-text white space
characters, but excluding trailing white space characters. Shortcodes in the text are not included,
but Markdown codes are. Only headings and text are counted.

Word Count
The words count is the sum of blocks of continuous character per line separated by any number of
white space characters or dashes. Only headings and text are counted.

Paragraph Count
The paragraph count is the number of text blocks separated by one or more empty line. A line
consisting only of white spaces is considered empty.

77

User Guide, Release 2.7.2

20.2 Manuscript Counts

These are the rules for the counts available for a manuscript in the Manuscript Tool. The rules have
been tuned to agree with LibreOffice Writer, but will vary slightly depending on the content of your text.
LibreOffice Writer also counts the text in the page header, which the Manuscript Tool does not.

The content of each line is counted after all formatting has been processed, so the result will be more
accurate than the counts for text documents elsewhere in the app. The following rules apply:

1. Short (–) and long (—) dashes are considered word separators.

2. Leading and trailing white spaces are generally included, but paragraph breaks are not.

3. Hard line breaks within paragraph are considered white space characters.

4. All formatting codes are ignored, including shortcodes, commands and Markdown.

5. Scene and section separators are counted.

6. Comments and meta data lines are counted after they are formatted.

7. Headers are counted after they are formatted with custom formats.

The following counts are available:

Headings
The number of headings in the manuscript.

Paragraphs
The number of body text paragraphs in the manuscript.

Words
The number of words in the manuscript, including any comments and meta data text.

Words in Text
The number of words in body text paragraphs, excluding all other text.

Words in Headings
The number of words in headings, including inserted formatting like chapter numbers, etc.

Characters
The number of characters in all lines, including any comments and meta data text. Paragraph
breaks are not counted, but in-paragraph hard line breaks are.

Character in Text
The number of characters in body text paragraphs. Paragraph breaks are not counted, but in-
paragraph hard line breaks are.

Characters in Headings
The number of characters in headings.

Character in Text, No Spaces
The number of characters in body text paragraphs considered part of a word or punctuation. That
is, white space characters are not counted.

Character in Headings, No Spaces
The number of characters in headings considered part of a word or punctuation. That is, white
space characters are not counted.

78 Chapter 20. Word and Text Counts

CHAPTER

TWENTYONE

TYPOGRAPHICAL NOTES

novelWriter has some support for typographical symbols that are not usually easily available in many text
editors. This includes for instance the proper unicode quotation marks, dashes, ellipsis, thin spaces, etc.
All these symbols are available from the Insert menu, and via keyboard shortcuts. See Insert Shortcuts.

This chapter provides some additional information on how novelWriter handles these symbols.

21.1 Dashes and Ellipsis

With the auto-replace feature enabled (see Auto-Replace as You Type), two and three hyphens are con-
verted automatically to short and long dashes, four hyphens to a horizontal bar, and three dots to ellipsis.

Tip: The last auto-replace can always be reverted with the undo command Ctrl+Z, reverting the text
to what you typed before the automatic replacement occurred.

In addition, “Figure Dash” is available. The Figure Dash is a dash that has the same width as the numbers
of the same font, for most fonts. It helps to align numbers nicely in columns when you need to use a dash
in them.

21.2 Single and Double Quotes

All the different quotation marks listed on the Quotation Mark Wikipedia page are available, and can be
selected as auto-replaced symbols for straight single and double quote key strokes. The settings can be
found in Preferences.

If your text contains straight single and double quotes, there are two convenience functions in the Format
menu that can be used to re-format a selected section of text with the correct quote symbols.

You can enable dialogue recognition and colour highlighting for novel documents. See Dialogue High-
lighting for more details.

79

https://en.wikipedia.org/wiki/Quotation_mark

User Guide, Release 2.7.2

21.3 Single and Double Prime

Both single and double prime symbols are available in the Insert menu. These symbols are the correct
symbols to use for unit symbols for feet, inches, minutes, and seconds. The usage of these is described
in more detail on the Wikipedia Prime page. They look very similar to single and double straight quotes,
and may be rendered similarly by the font, but they have different codes. Using these correctly will also
prevent the auto-replace and dialogue highlighting features misunderstanding their meaning in the text.

21.4 Modifier Letter Apostrophe

The auto-replace feature will consider any right-facing single straight quote as a quote symbol, even if
it is intended as an apostrophe. This also includes the syntax highlighter, which may assume the first
following apostrophe is the closing symbol of a single quoted region of text.

To get around this, an alternative apostrophe is available. It is a special Unicode character that is not
categorised as punctuation, but as a modifier. It is usually rendered the same way as the right single
quotation marks, depending on the font. There is a Wikipedia article for the Modifier letter apostrophe
with more details.

Note: On export with the Build Manuscript tool, these apostrophes will be replaced automatically with
the corresponding right hand single quote symbol as is generally recommended. Therefore it doesn’t
really matter if you only use them to correct syntax highlighting in some places, and not others.

21.5 White Space Symbols

A few variations of the regular space character is supported. The correct typographical way to separate
a number from its unit is with a thin space. It is usually 2/3 the width of a regular space. For numbers
and units, this should in addition be a non-breaking space, that is, the text wrapping should not add a line
break on this particular space.

A regular space can also be made into a non-breaking space if needed.

All non-breaking spaces are highlighted with a differently coloured background to make it easier to spot
them in the text. The colour will depend on the selected colour theme.

You can insert these spaces in your text using the following keyboard combinations:

• A non-breaking space can be inserted with Ctrl+K, Space.

• Thin spaces are also supported, and can be inserted with Ctrl+K, Shift+Space.

• Non-breaking thin space can be inserted with Ctrl+K, Ctrl+Space.

These are all insert features, and the Insert menu has more. The keyboard shortcuts for them are also
listed in Keyboard Shortcuts.

80 Chapter 21. Typographical Notes

https://en.wikipedia.org/wiki/Prime_(symbol)
https://en.wikipedia.org/wiki/Modifier_letter_apostrophe
https://en.wikipedia.org/wiki/Thin_space

CHAPTER

TWENTYTWO

CUSTOMISATIONS

There are a few ways you can customise novelWriter yourself. Currently, you can add new GUI themes,
your own syntax themes, and install additional dictionaries.

22.1 Spell Check Dictionaries

novelWriter uses Enchant as the spell checking tool. Depending on your operating system, it may or may
not load all installed spell check dictionaries automatically.

22.1.1 Linux and MacOS

On Linux and MacOS, you generally only have to install hunspell, aspell or myspell dictionaries on your
system like you do for other applications. See your distro or OS documentation for how to do this. These
dictionaries should show up as available spell check languages in novelWriter.

22.1.2 Windows

For Windows, English is included with the installation. For other languages you have to download and
add dictionaries yourself.

Install Tool

A small tool to assist with this can be found under Tools > Add Dictionaries. It will import spell checking
dictionaries from Free Office or Libre Office extensions. The dictionaries are then installed in the install
location for the Enchant library and should thus work for any application that uses Enchant for spell
checking.

Manual Install

If you prefer to do this manually or want to use a different source than the ones mentioned above, You
need to get compatible dictionary files for your language. You need two files files ending with .aff and
.dic. These files must then be copied to the following location:

C:\Users\<USER>\AppData\Local\enchant\hunspell

This assumes your user profile is stored at C:\Users\<USER>. The last one or two folders may not exist,
so you may need to create them.

You can find the various dictionaries on the Free Desktop website.

81

https://rrthomas.github.io/enchant/
https://cgit.freedesktop.org/libreoffice/dictionaries/tree/

User Guide, Release 2.7.2

Note: The Free Desktop link points to a repository, and what may look like file links inside the dictionary
folder are actually links to web pages. If you right-click and download those, you get HTML files, not
dictionaries!

In order to download the actual dictionary files, right-click the “plain” label at the end of each line and
download that.

22.2 Syntax and GUI Themes

Adding your own GUI and syntax themes is relatively easy, although it requires that you manually edit
config files with colour values. The themes are defined by simple plain text config files with meta data
and colour settings.

In order to make your own versions, first copy one of the existing files to your local computer and modify
it as you like.

• The existing syntax themes are stored in novelwriter/assets/syntax.

• The existing GUI themes are stored in novelwriter/assets/themes.

• The existing icon themes are stored in novelwriter/assets/icons.

Remember to also change the name of your theme by modifying the name setting at the top of the file,
otherwise you may not be able to distinguish them in Preferences.

For novelWriter to be able to locate the custom theme files, you must copy them to the Application Data
location in your home or user area. There should be a folder there named syntax for syntax themes, just
themes for GUI themes, and icons for icon themes. These folders are created the first time you start
novelWriter.

Once the files are copied there, they should show up in Preferences with the label you set as name inside
the file.

Note: The theme file formats change regularly in new releases. It is up to you to keep custom theme
files up to date.

22.2.1 Custom GUI and Icons Theme

A GUI theme .conf file consists of the following settings:

[Main]
name = My Custom Theme
description = A description of my custom theme
author = Jane Doe
credit = John Doe
url = https://example.com
license = CC BY-SA 4.0
licenseurl = https://creativecommons.org/licenses/by-sa/4.0/

(continues on next page)

82 Chapter 22. Customisations

https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/syntax
https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/themes
https://github.com/vkbo/novelWriter/tree/main/novelwriter/assets/icons

User Guide, Release 2.7.2

(continued from previous page)

[Icons]
default = 100, 100, 100
faded = 100, 100, 100
red = 255, 0, 0
orange = 255, 128, 0
yellow = 255, 255, 0
green = 0, 255, 0
aqua = 0, 255, 255
blue = 0, 0, 255
purple = 255, 0, 255

[Project]
root = 0, 255, 255
folder = 255, 255, 0
file = 100, 100, 100
title = 0, 255, 0
chapter = 255, 0, 0
scene = 0, 0, 255
note = 255, 255, 0

[Palette]
window = 100, 100, 100
windowtext = 100, 100, 100
base = 100, 100, 100
alternatebase = 100, 100, 100
text = 100, 100, 100
tooltipbase = 100, 100, 100
tooltiptext = 100, 100, 100
button = 100, 100, 100
buttontext = 100, 100, 100
brighttext = 100, 100, 100
highlight = 100, 100, 100
highlightedtext = 100, 100, 100
link = 100, 100, 100
linkvisited = 100, 100, 100

[GUI]
helptext = 0, 0, 0
fadedtext = 128, 128, 128
errortext = 255, 0, 0

In the Main section you must at least define the name settings.

The Palette values correspond to the Qt enum values for QPalette::ColorRole, see the Qt documen-
tation for more details. The colour values are RGB numbers on the format r, g, b where each is an
integer from 0 to 255. Omitted values are not loaded and will use default values. If the helptext colour
is not defined, it is computed as a colour between the window and windowtext colour. Additional shades
of some of the colours are also computed. These are mainly used for 3D effects.

New in version 2.5: The fadedtext and errortext theme colour entries were added.

New in version 2.7: The icontheme setting was dropped as the icon theme is now its own setting. The

22.2. Syntax and GUI Themes 83

https://doc.qt.io/qt-6/qpalette.html#ColorRole-enum
https://doc.qt.io/qt-6/qpalette.html#ColorRole-enum

User Guide, Release 2.7.2

[Icons] and [Project] sections were added, and the status* settings removed.

22.2.2 Custom Syntax Theme

A syntax theme .conf file consists of the following settings:

[Main]
name = My Syntax Theme
author = Jane Doe
credit = John Doe
url = https://example.com
license = CC BY-SA 4.0
licenseurl = https://creativecommons.org/licenses/by-sa/4.0/

[Syntax]
background = 255, 255, 255
text = 0, 0, 0
link = 0, 0, 0
headertext = 0, 0, 0
headertag = 0, 0, 0
emphasis = 0, 0, 0
dialog = 0, 0, 0
altdialog = 0, 0, 0
note = 0, 0, 0
hidden = 0, 0, 0
shortcode = 0, 0, 0
keyword = 0, 0, 0
tag = 0, 0, 0
value = 0, 0, 0
optional = 0, 0, 0
spellcheckline = 0, 0, 0
errorline = 0, 0, 0
replacetag = 0, 0, 0
modifier = 0, 0, 0
texthighlight = 255, 255, 255, 128

In the Main section, you must define at least the name setting. The Syntax colour values are RGB(A)
numbers of the format r, g, b, a where each is an integer from 0 to 255. The fourth value is the alpha
channel, which can be omitted.

Omitted syntax colours default to black, except background which defaults to white, and
texthighlight which defaults to white with half transparency.

New in version 2.2: The shortcode syntax colour entry was added.

New in version 2.3: The optional syntax colour entry was added.

New in version 2.4: The texthighlight syntax colour entry was added.

New in version 2.5: The dialog, altdialog, note and tag syntax colour entries were added.
straightquotes, doublequotes and singlequotes were removed.

84 Chapter 22. Customisations

CHAPTER

TWENTYTHREE

HANDLING ERRORS

In case something goes wrong, novelWriter has a few built-in features to reduce the chance your work is
lost. In case of a crash, it will also try to save whatever changes you have made before exiting, if this is
at all possible.

The storage solution is designed to save each text document independently, so only the document you’re
working on is actually at a risk of losing data in the event of a crash.

23.1 Recovered Documents

If novelWriter crashes or otherwise exits without saving the project state, or if you’re using a file syn-
chronisation tool that runs out of sync, there may be files in the project storage folder that aren’t tracked
in the core project file. These files, when discovered, are recovered and added back into the project when
a project is opened.

The discovered files are scanned for metadata that give clues as to where the document may previously
have been located in the project. The project loading routine will try to put them back as close as possible
to this location, if it still exists. Generally, it will be appended to the end of the folder where it previously
was located. If that folder doesn’t exist, it will try to add it to the correct root folder type. If it cannot
figure out which root folder is correct, the document will be added to the Novel root folder. Finally, if a
Novel does not exist, one will be created.

If the title of the document can be recovered, the word “Recovered:” will be added as a prefix to indicate
that it may need further attention. If the title cannot be determined, the document will be named after its
internal key, which is a string of characters and numbers.

23.2 Project Lockfile

To prevent data loss caused by file conflicts when novelWriter projects are synchronised via file synchro-
nisation tools, a project lockfile is written to the project storage folder when a project is open. If you try
to open a project that already has such a file present, you will be presented with a warning, and some
information about where else novelWriter thinks the project is also open. You will be given the option
to ignore this warning, and continue opening the project at your own risk.

Note: If, for some reason, novelWriter or your computer crashes, the lock file may remain even if there
are no other instances keeping the project open. In such a case it is safe to ignore the lock file warning
when re-opening the project.

85

User Guide, Release 2.7.2

Warning: If you choose to ignore the warning and continue opening the project, and multiple
instances of the project are in fact open, you are likely to cause inconsistencies and create diverging
project files, potentially resulting in loss of data and orphaned files. You are not likely to lose any
actual text unless both instances have the same document open in the editor, and novelWriter will try
to resolve project inconsistencies the next time you open the project.

86 Chapter 23. Handling Errors

CHAPTER

TWENTYFOUR

PROJECT FORMAT CHANGES

Most of the changes to the file formats over the history of novelWriter have no impact on the user side
of things. The project files are generally updated automatically. However, some of the changes require
minor actions from the user.

The key changes in the formats are listed in this chapter, as well as the user actions required, where
applicable.

A full project file format specification is available under “More Documents”.

Caution: When you update a project from one format version to the next, the project can no longer
be opened by a version of novelWriter prior to the version where the new file format was introduced.
You will get a notification about any updates to your project file format and will have the option to
decline the upgrade.

24.1 Format 1.5 Changes

This project format was introduced in novelWriter version 2.0 RC 2.

This is a modification of the 1.4 format. It makes the XML more consistent in that meta data have been
moved to their respective section nodes as attributes, and key/value settings now have a consistent format.
Logical flags are saved as yes/no instead of Python True/False, and the main heading of the document
is now saved to the item rather than in the index. The conversion is done automatically the first time a
project is loaded. No user action is required.

24.2 Format 1.4 Changes

This project format was introduced in novelWriter version 2.0 RC 1. Since this was a release candidate,
it is unlikely that your project uses it, but it may be the case if you’ve installed a pre-release.

This format changes the way project items (folders, documents and notes) are stored. It is a more compact
format that is simpler and faster to parse, and easier to extend. The conversion is done automatically the
first time a project is loaded. No user action is required.

87

User Guide, Release 2.7.2

24.3 Format 1.3 Changes

This project format was introduced in novelWriter version 1.5.

With this format, the number of document layouts was reduced from eight to two. The conversion of
document layouts is performed automatically when the project is opened.

Due to the reduction of layouts, some features that were previously controlled by these layouts will be
lost. These features are instead now controlled by syntax codes, so to recover these features, some minor
modification must be made to select documents by the user.

The manual changes the user must make should be very few as they apply to document layouts that should
be used only a few places in any given project. These are as follows:

Title Pages

• The formatting of the level one title on the title page must be changed from # Title Text to #!
Title Text in order to retain the previous functionality. See Heading Levels.

• Any text that was previously centred on the page must be manually centred using the text alignment
feature. See Alignment and Indentation.

Unnumbered Chapters

• Since the specific layout for unnumbered chapters has been dropped, such chapters must all use the
##! Chapter Name formatting code instead of ## Chapter Name. This also includes chapters
marked by an asterisk: ## *Chapter Name, as this feature has also been dropped. See Heading
Levels.

Plain Pages

• The layout named “Plain Page” has also been removed. The only feature of this layout was that it
ensured that the content always started on a fresh page. In the new format, fresh pages can be set
anywhere in the text with the [new page] code. See Vertical Space and Page Breaks.

24.4 Format 1.2 Changes

This project format was introduced in novelWriter version 0.10.

With this format, the way auto-replace entries were stored in the main project XML file changed. Con-
version from this format is done automatically.

24.5 Format 1.1 Changes

This project format was introduced in novelWriter version 0.7.

With this format, the content folder was introduced in the project storage. Previously, all novelWriter
documents were saved in a series of folders numbered from data_0 to data_f.

It also reduces the number of meta data and cache files. These files are automatically deleted if an old
project is opened. This was also when the Table of Contents file was introduced. Conversion from this
format is done automatically.

88 Chapter 24. Project Format Changes

User Guide, Release 2.7.2

24.6 Format 1.0 Changes

This is the original file format and project structure. It was in use up to version 0.6.3.

24.6. Format 1.0 Changes 89

User Guide, Release 2.7.2

90 Chapter 24. Project Format Changes

CHAPTER

TWENTYFIVE

FILE LOCATIONS

novelWriter will create a few files on your system outside of the application folder itself. These file
locations are described in this chapter.

25.1 Configuration

The general configuration of novelWriter, including everything that is in Preferences, is saved in one
central configuration file. The location of this file depends on your operating system. The system paths
are provided by the Qt QStandardPaths class and its ConfigLocation value.

The standard paths are:

• Linux: ~/.config/novelwriter/novelwriter.conf

• MacOS: ~/Library/Preferences/novelwriter/novelwriter.conf

• Windows: C:\Users\<USER>\AppData\Local\novelwriter\novelwriter.conf

Here, ~ corresponds to the user’s home directory on Linux and MacOS, and <USER> is the user’s user-
name on Windows.

Note: These are the standard operating system defined locations. If your system has been set up in a
different way, these locations may also be different.

25.2 Application Data

novelWriter also stores a bit of data that is generated by the user’s actions. This includes the list of recent
projects form the Welcome dialog. Custom themes should also be saved here. The system paths are
provided by the Qt QStandardPaths class and its AppDataLocation value.

The standard paths are:

• Linux: ~/.local/share/novelwriter/

• MacOS: ~/Library/Application Support/novelwriter/

• Windows: C:\Users\<USER>\AppData\Roaming\novelwriter\

Here, ~ corresponds to the user’s home directory on Linux and MacOS, and <USER> is the user’s user-
name on Windows.

91

https://doc.qt.io/qt-6/qstandardpaths.html
https://doc.qt.io/qt-6/qstandardpaths.html

User Guide, Release 2.7.2

Note: These are the standard operating system defined locations. If your system has been set up in a
different way, these locations may also be different.

The Application Data location also holds several folders:

cache
This folder is used to save the preview data for the Manuscript Build tool.

icons, syntax and themes
These folders are empty by default, but this is where the user can store custom theme files. See
Customisations for more details.

92 Chapter 25. File Locations

CHAPTER

TWENTYSIX

HOW DATA IS STORED

This chapter contains details of how novelWriter stores and handles the project data.

26.1 Overview

The files of a novelWriter project are stored in a dedicated project folder. The project structure is kept in
a file at the root of this folder called nwProject.nwx. All the document files and associated meta data
are stored in other folders below the project folder.

This way of storing data was chosen for several reasons.

Firstly, all the text you add to your project is saved directly to your project folder in separate files. Only
the project structure and the text you are currently editing is stored in memory at any given time, which
means there is a smaller risk of losing data if the application or your computer crashes.

Secondly, having multiple small files means it is very easy to synchronise them between computers with
standard file synchronisation tools.

Thirdly, if you use version control software to track the changes to your project, the file formats used for
the files are well suited. All the JSON documents have line breaks and indents as well, which makes it
easier to track them with version control software.

Note: Since novelWriter has to keep track of a bunch of files and folders when a project is open, it may
not run well on some virtual file systems. A file or folder must be accessible with exactly the path it was
saved or created with. An example where this is not the case is the way Google Drive is mapped on Linux
Gnome desktops using gvfs/gio.

Caution: You should not add additional files to the project folder yourself. Nor should you, as a rule,
manually edit files within it. If you really must manually edit the text files, e.g. with some automated
task you want to perform, you need to rebuild the Project Index when you open the project again.

Editing text files in the content folder is less risky as these are just plain text. Editing the main
project XML file, however, may make the project file unreadable and you may crash novelWriter and
lose project structure information and project settings.

93

https://en.wikipedia.org/wiki/Version_control

User Guide, Release 2.7.2

26.2 Project Structure

All novelWriter files are written with utf-8 encoding. Since Python automatically converts Unix line
endings to Windows line endings on Windows systems, novelWriter does not make any adaptations to
the formatting on Windows systems. This is handled entirely by the Python standard library. Python also
handles this when working on the same files on both Windows and Unix-based operating systems.

26.2.1 Main Project File

The project itself requires a dedicated folder for storing its files, where novelWriter will create its own
“file system” where the project’s folder and file hierarchy is described in a project XML file. This is the
main project file in the project’s root folder with the name nwProject.nwx. This file also contains all
the meta data required for the project (except the index data), and a number of related project settings.

If this file is lost or corrupted, the structure of the project is lost, although not the text itself. It is important
to keep this file backed up, either through the built-in backup tool, or your own backup solution.

The project XML file is indent-formatted, and is suitable for diff tools and version control since most of
the file will stay static, although a timestamp is set in the meta section on line 2, and various meta data
entries incremented, on each save.

A full project file format specification is available under “More Documents”.

26.3 Project Documents

All the project documents are saved in a subfolder of the main project folder named content. Each
document has a file handle based on a 52 bit random number, represented as a hexadecimal string. The
documents are saved with a filename assembled from this handle and the file extension .nwd.

If you wish to find the file system location of a document in the project, you can either look it up in the
project XML file, select Show File Details from the Document menu when having the document open
in the editor, or look in the ToC.txt file in the root of the project folder. The ToC.txt file has a list of
all documents in the project, referenced by their label, and where they are saved.

The reason for this cryptic file naming is to avoid issues with file naming conventions and restrictions
on different operating systems, and also to have a file name that does not depend on what you name the
document within the project, or changes it to. This is particularly useful when using a versioning system.

Each document file contains a plain text version of the text from the editor. The file can in principle be
edited in any text editor, and is suitable for diffing and version control if so desired. Just make sure the file
remains in utf-8 encoding, otherwise unicode characters may become mangled when the file is opened
in novelWriter again.

Editing these files is generally not recommended. The reason for this is that the index will not be auto-
matically updated when doing so, which means novelWriter doesn’t know you’ve altered the file. If you
do edit a file in this manner, you should rebuild the index when you next open the project in novelWriter.

The first lines of the file may contain some meta data starting with the characters %%~. These lines are
mainly there to restore some information if the file is lost from the main project file, and the information
may be helpful if you do open the file in an external editor as it contains the document label and the
document class and layout. The lines can be deleted without any consequences to the rest of the content
of the file, and will be added back the next time the document is saved in novelWriter.

94 Chapter 26. How Data is Stored

User Guide, Release 2.7.2

26.3.1 The File Saving Process

When saving the project file, or any of the documents, the data is first saved to a temporary file. If
successful, the old data file is then removed, and the temporary file replaces it. This ensures that the
previously saved data is only replaced when the new data has been successfully saved to the storage
medium.

26.4 Project Meta Data

The project folder contains a subfolder named meta, containing a number of files. The meta folder
contains semi-important files. That is, they can be lost with only minor impact to the project. All files in
this folder are JSON or JSON Lines files, although some other files may remain from earlier versions of
novelWriter as they haven’t all been JSON files in the past.

If you use version control software on your project, you can exclude this folder, although you may want
to track the session log file and the custom words list.

26.4.1 The Project Index

Between writing sessions, the project index is saved in a JSON file in meta/index.json. This file is
not critical. If it is lost, it can be completely rebuilt from within novelWriter from the Tools menu.

The index is maintained and updated whenever a document or note is saved in the editor. It contains all
references and tags in documents and notes, as well as the location of all headers in the project, and the
word counts within each header section.

The integrity of the index is checked when the file is loaded. It is possible to corrupt the index if the file
is manually edited and manipulated, so the check is important to avoid sudden crashes of novelWriter.
If the file contains errors, novelWriter will automatically build it anew. If the check somehow fails and
novelWriter keeps crashing, you can delete the file manually and rebuild the index. If this too fails, you
have likely encountered a bug.

26.4.2 Build Definitions

The build definitions from the Manuscript Build tool are kept in the meta/builds.json file. If this
file is lost, all custom build definitions are lost too.

26.4.3 Cached GUI Options

A file named meta/options.json contains the latest state of various GUI buttons, switches, dialog
window sizes, column sizes, etc, from the GUI. These are the GUI settings that are specific to the project.
Global GUI settings are stored in the main config file.

The file is not critical, but if it is lost, all such GUI options will revert back to their default settings.

26.4. Project Meta Data 95

User Guide, Release 2.7.2

26.4.4 Custom Word List

A file named meta/userdict.json contains all the custom words you’ve added to the project for spell
checking purposes. The content of the file can be edited from the Tools menu. If you lose this file, all
your custom spell check words will be lost too.

26.4.5 Session Stats

The writing progress is saved in the meta/sessions.jsonl file. This file records the length and word
counts of each writing session on the given project. The file is used by the Writing Statistics tool. If
this file is lost, the history it contains is also lost, but it has otherwise no impact on the project.

Each session is recorded as a JSON object on a single line of the file. Each session record is appended
tot he file.

96 Chapter 26. How Data is Stored

CHAPTER

TWENTYSEVEN

RUNNING FROM SOURCE

This chapter describes various ways of running novelWriter directly from the source code, and how to
build the various components like the translation files and documentation.

Note: The text below assumes the command python corresponds to a Python 3 executable. Python 2
is now deprecated, but on many systems the command python3 may be needed instead. Likewise, pip
may need to be replaced with pip3.

Most of the custom commands for building packages of novelWriter, or building assets, are contained in
the pkgutils.py script in the root of the source code. You can list the available commands by running:

python pkgutils.py --help

27.1 Dependencies

novelWriter has been designed to rely on as few dependencies as possible. Only the Python wrapper
for the Qt GUI libraries is required. The package for spell checking is optional, but recommended.
Everything else is handled with standard Python libraries.

The following Python packages are needed to run all features of novelWriter:

• PyQt6 – needed for connecting with the Qt6 libraries.

• PyEnchant – needed for spell checking (optional).

If you want spell checking, you must install the PyEnchant package. The spell check library must be at
least 3.0 to work with Windows. On Linux, 2.0 also works fine.

If you install from PyPi, these dependencies should be installed automatically. If you install from source,
dependencies can still be installed from PyPi with:

pip install -r requirements.txt

Note: On Linux distros, the Qt library is usually split up into multiple packages. In some cases, sec-
ondary dependencies may not be installed automatically. For novelWriter, the library files for rendering
the SVG icons may be left out and needs to be installed manually. This is the case on for instance Arch
Linux.

97

User Guide, Release 2.7.2

27.2 Build and Install from Source

If you want to install novelWriter directly from the source available on GitHub, you must first build the
package using the Python Packaging Authority’s build tool. It can be installed with:

pip install build

On Debian-based systems the tool can also be installed with:

sudo apt install python3-build

With the tool installed, run the following command from the root of the novelWriter source code:

python -m build --wheel

This should generate a .whl file in the dist/ folder at your current location. The wheel file can then be
installed on your system. Here with example version number 2.0.7, but yours may be different:

pip install --user dist/novelWriter-2.0.7-py3-none-any.whl

27.3 Building the Translation Files

If you installed novelWriter from a package, the translation files should be pre-built and included. If
you’re running novelWriter from the source code, you will need to generate the files yourself. The files
you need will be written to the novelwriter/assets/i18n folder, and will have the .qm file extension.

You can build the .qm files with:

python pkgutils.py qtlrelease

This requires that the Qt Linguist tool is installed on your system. On Ubuntu and Debian, the needed
package is called qttools5-dev-tools.

Note: If you want to improve novelWriter with translation files for another language, or update an
existing translation, instructions for how to contribute can be found in the README.md file in the i18n
folder of the source code.

27.4 Building the Example Project

In order to be able to create new projects from example files, you need a sample.zip file in the assets
folder of the source. This file can be built from the pkgutils.py script by running:

python pkgutils.py sample

98 Chapter 27. Running from Source

https://github.com/vkbo/novelWriter/releases

User Guide, Release 2.7.2

27.5 Building the Documentation

A local copy of this documentation can be generated as HTML. This requires installing some Python
packages from PyPi:

pip install -r docs/requirements.txt

The documentation can then be built from the root folder in the source code by running:

make -C docs html

If successful, the documentation should be available in the docs/build/html folder and you can open
the index.html file in your browser.

You can also build a PDF manual from the documentation using the pkgutils.py script:

python pkgutils.py docs-pdf en

This will build the English documentation as a PDF using LaTeX. The file will then be copied into the
assets folder and made available in the Help menu in novelWriter. Replace en with all to build for all
languages. The Sphinx build system has a few extra dependencies when building the PDF. Please check
the Sphinx Docs for more details.

27.5. Building the Documentation 99

https://www.sphinx-doc.org/

User Guide, Release 2.7.2

100 Chapter 27. Running from Source

CHAPTER

TWENTYEIGHT

RUNNING TESTS

The novelWriter source code is well covered by tests. The test framework used for the development is
pytest with the use of an extension for Qt.

28.1 Dependencies

The dependencies for running the tests can be installed with:

pip install -r tests/requirements.txt

This will install a couple of extra packages for coverage and test management. The minimum requirement
is pytest and pytest-qt.

28.2 Simple Test Run

To run the tests, you simply need to execute the following from the root of the source folder:

pytest

Since several of the tests involve opening up the novelWriter GUI, you may want to disable the GUI for
the duration of the test run. Moving your mouse while the tests are running may otherwise interfere with
the execution of some tests.

You can disable the renderring of the GUI by setting the flag QT_QPA_PLATFORM=offscreen:

export QT_QPA_PLATFORM=offscreen pytest

28.3 Advanced Options

Adding the flag -v to the pytest command will increase verbosity of the test execution.

You can also add coverage report generation. For instance to HTML:

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-report=html

Other useful report formats are xml, and term for terminal output.

You can also run tests per subpackage of novelWriter with the -m command. The available subpackage
groups are base, core, and gui. Consider for instance:

101

User Guide, Release 2.7.2

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-
→˓report=html -m core

This will only run the tests of the “core” package, that is, all the classes that deal with the project data
of a novelWriter project. The “gui” tests, likewise, will run the tests for the GUI components, and the
“base” tests cover the bits in-between.

You can also filter the tests with the -k switch. The following will do the same as -m core:

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-
→˓report=html -k testCore

All tests are named in such a way that you can filter them by adding more bits of the test names. They
all start with the word “test”. Then comes the group: “Core”, “Base”, “Dlg”, “Tool”, or “Gui”. Finally
comes the name of the class or module, which generally corresponds to a single source code file. For
instance, running the following will run all tests for the document editor:

export QT_QPA_PLATFORM=offscreen pytest -v --cov=novelwriter --cov-
→˓report=html -k testGuiEditor

To run a single test, simply add the full test name to the -k switch.

102 Chapter 28. Running Tests

	Introduction
	Why Plain Text?
	Adding Meta Data

	Organising Your Project
	How Root Folders Work
	Root Folder Types

	Regular Folders
	Documents
	Document Templates

	Active and Inactive Documents
	Importance and Status

	Chapters and Scenes
	Heading Levels

	Basic Formatting
	Text Paragraphs
	Text Emphasis with Markdown

	Comments and Notes
	Plain Comments
	Synopsis or Description Comments
	Synopsis
	Short Description

	Footnote Comments
	Ignored Text

	Tags and References
	How to Use Tags
	How to Use References
	Auto-Completion in the Editor

	Alignment and Indentation
	Paragraph Alignment and Indentation
	Alignment with Line Breaks
	Alignment with First Line Indent
	Alignment with Forced Line Breaks

	Advanced Formatting
	Formatting with Shortcodes
	Forced Line Break

	Vertical Space and Page Breaks
	Inserting Word Counts in the Text

	Front and Back Matter
	The Title Page
	Additional Pages
	Unnumbered Chapters

	Tips & Tricks
	Managing the Project
	Layout Tricks
	Organising Your Text
	Other Tools

	The Main Window
	Project Tree and Editor View
	Drag & Drop

	Novel View and Editor View
	Novel Outline View
	Project Search
	Switching Focus
	Colour Themes

	Managing Projects
	Creating A New Project
	Template Projects

	Project Settings
	General Settings
	Status and Importance
	Text Auto-Replace

	Backup

	The Editor and Viewer
	Editing a Document
	Spell Checking
	Word Counts

	Search & Replace
	Auto-Replace as You Type
	Viewing a Document
	Document References

	Split and Merge Documents
	Splitting Documents
	Merging Documents

	Building the Manuscript
	The Manuscript Build Tool
	Outline and Word Counts

	Build Settings
	Document Selection
	Formatting Headings
	Automatic Numbering
	Scene Separators
	Hard and Soft Scenes

	Output Settings

	Building Manuscript Documents
	File Formats
	Additional Formats

	Printing

	Writing Statistics
	Idle Time
	Session Timer

	Dialogue Highlighting
	Quoted Dialogue
	Alternative Dialogue
	Dialogue Line Symbols
	Dialogue with Narrator Break
	Alternating Dialogue and Narration

	Story Comments
	Story Structure Comments
	Usage
	Output

	Story Notes
	Usage
	Output

	Keyboard Shortcuts
	Main Window Shortcuts
	Project Tree Shortcuts
	Document Editor Shortcuts
	Text Search Shortcuts
	Text Formatting Shortcuts
	Other Editor Shortcuts
	Insert Shortcuts

	Document Viewer Shortcuts

	Word and Text Counts
	Text Word Counts and Stats
	Manuscript Counts

	Typographical Notes
	Dashes and Ellipsis
	Single and Double Quotes
	Single and Double Prime
	Modifier Letter Apostrophe
	White Space Symbols

	Customisations
	Spell Check Dictionaries
	Linux and MacOS
	Windows

	Syntax and GUI Themes
	Custom GUI and Icons Theme
	Custom Syntax Theme

	Handling Errors
	Recovered Documents
	Project Lockfile

	Project Format Changes
	Format 1.5 Changes
	Format 1.4 Changes
	Format 1.3 Changes
	Format 1.2 Changes
	Format 1.1 Changes
	Format 1.0 Changes

	File Locations
	Configuration
	Application Data

	How Data is Stored
	Overview
	Project Structure
	Main Project File

	Project Documents
	The File Saving Process

	Project Meta Data
	The Project Index
	Build Definitions
	Cached GUI Options
	Custom Word List
	Session Stats

	Running from Source
	Dependencies
	Build and Install from Source
	Building the Translation Files
	Building the Example Project
	Building the Documentation

	Running Tests
	Dependencies
	Simple Test Run
	Advanced Options

